Previous |  Up |  Next


Title: Some methods for calculating stiffness properties of periodic structures (English)
Author: Berggren, Stein A.
Author: Lukkassen, Dag
Author: Meidell, Annette
Author: Simula, Leon
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 2
Year: 2003
Pages: 97-110
Summary lang: English
Category: math
Summary: We present a general numerical method for calculating effective elastic properties of periodic structures based on the homogenization method. Some concrete numerical examples are presented. (English)
Keyword: homogenization theory
Keyword: numerical methods
Keyword: effective stiffness properties
MSC: 35B27
MSC: 74K99
MSC: 74Q15
MSC: 74Qxx
MSC: 74S30
idZBL: Zbl 1099.74053
idMR: MR1966343
DOI: 10.1023/A:1026090026531
Date available: 2009-09-22T18:12:46Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] J.  Byström, N.  Jekabsons and J.  Varna: An evaluation of different models for prediction of elastic properties of woven composites.Composites: Part B 31, 2000, pp. 7–20.
Reference: [2] R. D.  Cook, D.  S.  Malkus and M. E.  Plesha: Concepts and Applications of Finite Element Analysis.J.  Wiley and Sons, 1989.
Reference: [3] J.  Franců: Homogenization of linear elasticity equations.Apl. Mat. 27 (1982), 96–117. MR 0651048
Reference: [4] L.  Greengard, J.  Helsing: On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites.J.  Mech. Phys. Solids 46 (1998), 1441–1462. MR 1634000, 10.1016/S0022-5096(97)00041-0
Reference: [5] J.  Helsing: An integral equation method for elastostatics of periodic composites.J.  Mech. Phys. Solids 43 (1995), 815–828. Zbl 0870.73042, MR 1332235, 10.1016/0022-5096(95)00018-E
Reference: [6] R.  Hill: Theory of mechanical properties of fibre-strengthened materials. I. Elastic behaviour.Journal of the Mechanics and Physics of Solids 12 (1964), 199–212. MR 0176652
Reference: [7] A.  Holmbom, L. E.  Persson and N.  Svanstedt: A homogenization procedure for computing effective moduli and microstresses in composite materials.Composites Engineering 2 (1992), 249–259. 10.1016/0961-9526(92)90008-T
Reference: [8] V. V.  Jikov, S. M.  Kozlov and O. A.  Oleinik: Homogenization of Differential Operators and Integral Functionals.Springer-Verlag, Berlin, 1994. MR 1329546
Reference: [9] D.  Lukkassen: A new reiterated structure with optimal macroscopic behavior.SIAM J.  Appl. Math. 59 (1999), 18250–1842. Zbl 0933.35023, MR 1710545, 10.1137/S0036139997320081
Reference: [10] D.  Lukkassen: Some aspects of reiterated honeycombs.In: Mechanics of Composite Materials and Structures. Vol. III, C. A.  Mota Soares, C. M.  Mota Soares and M. J. M.  Freitas (eds.), NATO ASI, Troia, Portugal, 1998, pp. 399–409.
Reference: [11] D.  Lukkassen, L.-E.  Persson, P.  Wall: Some engineering and mathematical aspects on the homogenization method.Composites Engineering 5 (1995), 519–531. 10.1016/0961-9526(95)00025-I
Reference: [12] A.  Meidell: The out-of-plane shear modulus of two-component regular honeycombs with arbitrary thickness.In: Mechanics of Composite Materials and Structures. Vol.  III, C. A.  Mota Soares, C. M. Mota Soares and M. J. M.  Freitas (eds.), NATO ASI, Troia, Portugal, 1998, pp. 367–379.
Reference: [13] A.  Meidell, P.  Wall: Homogenization and design of structures with optimal macroscopic behaviour.In: Computer Aided Optimum Design of Structures V, S.  Hernández, C. A.  Brebbia (eds.), Computational Mechanics Publications, Southampton, 1997, pp. 393–402.
Reference: [14] L. E.  Persson, L.  Persson, N.  Svanstedt and J.  Wyller: The Homogenization Method: An Introduction.Studentlitteratur, Lund, 1993. MR 1250833
Reference: [15] J. N.  Reddy: Energy and Variational Methods in Applied Mechanics.J.  Wiley and Sons, New York, 1984. Zbl 0635.73017


Files Size Format View
AplMat_48-2003-2_2.pdf 497.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo