| Title:
             | 
Bounds for $f$-divergences under likelihood ratio constraints (English) | 
| Author:
             | 
Dragomir, S. S. | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
48 | 
| Issue:
             | 
3 | 
| Year:
             | 
2003 | 
| Pages:
             | 
205-223 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we establish an upper and a lower bound for the $f$-divergence of two discrete random variables under likelihood ratio constraints in terms of the Kullback-Leibler distance. Some particular cases for Hellinger and triangular discimination, $\chi ^2$-distance and Rényi’s divergences, etc. are also considered. (English) | 
| Keyword:
             | 
$f$-divergence | 
| Keyword:
             | 
divergence measures in information theory | 
| Keyword:
             | 
Jensen’s inequality | 
| Keyword:
             | 
Hellinger and triangular discrimination | 
| MSC:
             | 
26D15 | 
| MSC:
             | 
94A17 | 
| idZBL:
             | 
Zbl 1099.94015 | 
| idMR:
             | 
MR1980368 | 
| DOI:
             | 
10.1023/A:1026054413327 | 
| . | 
| Date available:
             | 
2009-09-22T18:13:33Z | 
| Last updated:
             | 
2020-07-02 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/134528 | 
| . | 
| Reference:
             | 
[1] I.  Csiszár: Information measures: A critical survey.Trans. 7th Prague Conf. on Info. Th., Statist. Decis. Funct., Random Processes and 8th European Meeting of Statist., Volume  B, Academia Prague, 1978, pp. 73–86. MR 0519465 | 
| Reference:
             | 
[2] I.  Csiszár: Information-type measures of difference of probability functions and indirect observations.Studia Sci. Math. Hungar. 2 (1967), 299–318. MR 0219345 | 
| Reference:
             | 
[3] I.  Csiszár, J.  Körner: Information Theory: Coding Theorem for Discrete Memory-less Systems.Academic Press, New York, 1981. MR 0666545 | 
| Reference:
             | 
[4] : Maximum Entropy and Bayesian Methods in Applied Statistics.J. H.  Justice (ed.), Cambridge University Press, Cambridge, 1986. Zbl 0597.00025, MR 0892126 | 
| Reference:
             | 
[5] J. N.  Kapur: On the roles of maximum entropy and minimum discrimination information principles in Statistics.Technical Address of the 38th Annual Conference of the Indian Society of Agricultural Statistics, 1984, pp. 1–44. MR 0786009 | 
| Reference:
             | 
[6] I.  Burbea, C. R.  Rao: On the convexity of some divergence measures based on entropy functions.IEEE Transactions on Information Theory 28 (1982), 489–495. MR 0672884, 10.1109/TIT.1982.1056497 | 
| Reference:
             | 
[7] R. G.  Gallager: Information Theory and Reliable Communications.J.  Wiley, New York, 1968. | 
| Reference:
             | 
[8] C. E.  Shannon: A mathematical theory of communication.Bull. Sept. Tech. J. 27 (1948), 370–423 and 623–656. Zbl 1154.94303, MR 0026286 | 
| Reference:
             | 
[9] B. R.  Frieden: Image enhancement and restoration.Picture Processing and Digital Filtering, T. S.  Huang (ed.), Springer-Verlag, Berlin, 1975. | 
| Reference:
             | 
[10] R. M.  Leahy, C. E.  Goutis: An optimal technique for constraint-based image restoration and mensuration.IEEE Trans. on Acoustics, Speech and Signal Processing 34 (1986), 1629–1642. 10.1109/TASSP.1986.1165001 | 
| Reference:
             | 
[11] S. Kullback: Information Theory and Statistics.J.  Wiley, New York, 1959. Zbl 0088.10406, MR 0103557 | 
| Reference:
             | 
[12] S.  Kullback, R. A.  Leibler: On information and sufficiency.Ann. Math. Statistics 22 (1951), 79–86. MR 0039968, 10.1214/aoms/1177729694 | 
| Reference:
             | 
[13] R.  Beran: Minimum Hellinger distance estimates for parametric models.Ann. Statist. 5 (1977), 445–463. Zbl 0381.62028, MR 0448700, 10.1214/aos/1176343842 | 
| Reference:
             | 
[14] A.  Renyi: On measures of entropy and information.Proc. Fourth Berkeley Symp. Math. Statist. Prob., Vol. 1, University of California Press, Berkeley, 1961. Zbl 0106.33001, MR 0132570 | 
| Reference:
             | 
[15] S. S. Dragomir, N. M. Ionescu: Some converse of Jensen’s inequality and applications.Anal. Numer. Theor. Approx. 23 (1994), 71–78. MR 1325895 | 
| Reference:
             | 
[16] S. S.  Dragomir, C. J.  Goh: A counterpart of Jensen’s discrete inequality for differentiable convex mappings and applications in information theory.Math. Comput. Modelling 24 (1996), 1–11. MR 1403525, 10.1016/0895-7177(96)00085-4 | 
| Reference:
             | 
[17] S. S.  Dragomir, C. J.  Goh: Some counterpart inequalities in for a functional associated with Jensen’s inequality.J. Inequal. Appl. 1 (1997), 311–325. MR 1732628 | 
| Reference:
             | 
[18] S. S.  Dragomir, C. J.  Goh: Some bounds on entropy measures in information theory.Appl. Math. Lett. 10 (1997), 23–28. MR 1457634, 10.1016/S0893-9659(97)00028-1 | 
| Reference:
             | 
[19] S. S. Dragomir, C. J. Goh: A counterpart of Jensen’s continuous inequality and applications in information theory.RGMIA Preprint.http://matilda.vu.edu.au/~rgmia/InfTheory/Continuse.dvi. MR 1977385 | 
| Reference:
             | 
[20] M.  Matić: Jensen’s inequality and applications in information theory.Ph.D. Thesis, Univ. of Zagreb, 1999. (Croatian) | 
| Reference:
             | 
[21] S. S.  Dragomir, J. Unde and M.  Scholz: Some upper bounds for relative entropy and applications.Comput. Math. Appl. 39 (2000), 257–266. MR 1753564, 10.1016/S0898-1221(00)00089-4 | 
| Reference:
             | 
[22] J. N.  Kapur: A comparative assessment of various measures of directed divergence.Advances Manag. Stud. 3 (1984), 1–16. | 
| Reference:
             | 
[23] D. S.  Mitrinović, J. E.  Pečarić and A. M.  Fink: Classical and New Inequalities in Analysis.Kluwer Academic Publishers, , 1993. MR 1220224 | 
| Reference:
             | 
[24] F.  Topsoe: Some inequalities for information divergence and related measures of discrimination.Res. Rep. Coll. RGMIA 2 (1999), 85–98. MR 1768575 | 
| Reference:
             | 
[25] D.  Dacunha-Castelle: Vitesse de convergence pour certains problemes statistiques.In: Ecole d’été de Probabilités de Saint-Flour, VII (Saint-Flour, 1977). Lecture Notes in Math. Vol. 678, Springer, Berlin, 1978, pp. 1–172. Zbl 0387.62015, MR 0518733 | 
| Reference:
             | 
[26] H.  Jeffreys: An invariant form for the prior probability in estimation problems.Proc. Roy. Soc. London Ser.  A 186 (1946), 453–461. Zbl 0063.03050, MR 0017504, 10.1098/rspa.1946.0056 | 
| Reference:
             | 
[27] A.  Bhattacharyya: On a measure of divergence between two statistical populations defined by their probability distributions.Bull. Calcutta Math. Soc. 35 (1943), 99–109. Zbl 0063.00364, MR 0010358 | 
| Reference:
             | 
[28] S. S.  Dragomir: Some inequalities for the Csiszár $\Phi $-divergence.Submitted. | 
| Reference:
             | 
[29] S. S.  Dragomir: A converse inequality for the Csiszár $\Phi $-divergence.Submitted. Zbl 1066.94007 | 
| Reference:
             | 
[30] S. S. Dragomir: Some inequalities for $(m,M)$-convex mappings and applications for the Csiszár $\Phi $-divergence in information theory.Math. J. Ibaraki Univ. (Japan) 33 (2001), 35–50. Zbl 0996.26019, MR 1883258 | 
| Reference:
             | 
[31] F.  Liese, I.  Vajda: Convex Statistical Distances.Teubner Verlag, Leipzig, 1987. MR 0926905 | 
| Reference:
             | 
[32] I.  Vajda: Theory of Statistical Inference and Information.Kluwer, Boston, 1989. Zbl 0711.62002 | 
| . |