[1] D. Gilbarg, N. S. Trudinger: 
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg-Tokyo, 1983. 
MR 0737190[3] Ch. Grossman, M. Krätzschmar, H.-G. Roos: 
Gleichmäßig einschließende Diskretisierungsverfahren für schwach nichtlineare Randwertaufgaben. Numer. Math. 49 (1986), 95–110. 
DOI 10.1007/BF01389432 | 
MR 0847020[4] J. Kačur: 
On $L_{\infty }$-convergence of Rothe’s method. Comment. Math. Univ. Carolin. 30 (1989), 505–510. 
MR 1031868[5] J. Kačur: 
Application of Rothe’s method to evolution integro-differential equations. J.  Reine Angew. Math. 388 (1988), 73–105. 
MR 0944184[6] N. Kikuchi: Hölder estimates of solutions to difference-differential equations of elliptic-parabolic type. J. Geom. Anal. 10 (2000), 525–538.
[7] N. Kikuchi: 
On a method of constructing Morse flows to variational functionals. Nonlinear World 1 (1994), 131–147. 
MR 1297075[8] G. Koeffe, H.-G. Roos, L. Tobiska: 
An enclosure generating modification of the method of discretization in time. Comment. Math. Univ. Carolin. 28 (1982), 441–447. 
MR 0912574[9] V. Pluschke: 
$L_{\infty }$-estimates and uniform convergence of Rothe’s method for quasilinear parabolic differential equations. Methoden Verfahren Math. Phys. Vol 37, K. Kleinman et al. (eds.), Peter Lang-Verlag, 1991, pp. 187–199. 
MR 1215747[11] A. Kufner, O. John, S. Fučík: 
Function Spaces. Academia, Prague, 1977. 
MR 0482102[12] J.  Nečas: 
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. 
MR 0227584[13] K. Rektorys: 
The Method of Discretization in Time and Partial Differential Equations. Reidel Publishing Company, Dordrecht-Boston-London, 1982. 
MR 0689712 | 
Zbl 0522.65059