Previous |  Up |  Next

Article

Keywords:
mean-curvature flow; phase-field method; FDM; Finsler geometry
Summary:
We investigate the motion by mean curvature in relative geometry by means of the modified Allen-Cahn equation, where the anisotropy is incorporated. We obtain the existence result for the solution as well as a result concerning the asymptotical behaviour with respect to the thickness parameter. By means of a numerical scheme, we can approximate the original law, as shown in several computational examples.
References:
[1] G. Bellettini, M. Novaga, and M. Paolini: Characterization of facet-breaking for nonsmooth mean curvature flow in the convex case. Interfaces and Free Boundaries 3 (2001), 415–446. MR 1869587
[2] G. Bellettini, M. Paolini: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math.  J. 25 (1996), 537–566. DOI 10.14492/hokmj/1351516749 | MR 1416006
[3] M. Beneš: Anisotropic phase-field model with focused latent-heat release. In: Free Boundary Problems: Theory and Applications II, GAKUTO International Series Mathematical Sciences and Applications, Vol. 14, Chiba, Japan, 2000, pp. 18–30. MR 1793055
[4] M. Beneš: Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interfaces and Free Boundaries 3 (2001), 201–221. MR 1825658 | Zbl 0986.35116
[5] M. Beneš: Mathematical and computational aspects of solidification of pure substances. Acta Math. Univ. Comenian. 70 (2001), 123–152. MR 1865364 | Zbl 0990.80006
[6] M. Beneš, K. Mikula: Simulation of anisotropic motion by mean curvature-comparison of phase-field and sharp-interface approaches. Acta Math. Univ. Comenian. 67 (1998), 17–42. MR 1660813
[7] L. Bronsard, R. Kohn: Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations 90 (1991), 211–237. DOI 10.1016/0022-0396(91)90147-2 | MR 1101239
[8] G. Caginalp: An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal. 92 (1986), 205–245. DOI 10.1007/BF00254827 | MR 0816623 | Zbl 0608.35080
[9] C. M.  Elliott, M. Paolini, and R. Schtzle: Interface estimates for the fully anisotropic Allen-Cahn equation and anisotropic mean curvature flow. Math. Models Methods Appl. Sci. 6 (1996), 1103–1118. MR 1428147
[10] L. C.  Evans, J. Spruck: Motion of level sets by mean curvature  I. J.  Differential Geom. 33 (1991), 635–681. DOI 10.4310/jdg/1214446559 | MR 1100206
[11] Y. Giga, M. Paolini, and P. Rybka: On the motion by singular interfacial energy. Japan J.  Indust. Appl. Math. 18 (2001), 47–64. MR 1842909
[12] M. Gurtin: On the two-phase Stefan problem with interfacial energy and entropy. Arch. Rational Mech. Anal. 96 (1986), 200–240. MR 0855304 | Zbl 0654.73008
[13] M. Gurtin: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford, 1993. MR 1402243 | Zbl 0787.73004
[14] D. A.  Kessler, J. Koplik, and H. Levine: Geometrical models of interface evolution. III. Theory of dendritic growth. Phys. Rev.  A 31 (1985), 1712–1717.
[15] J.-L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris, 1969. MR 0259693 | Zbl 0189.40603
[16] T. Ohta, M. Mimura, and R. Kobayashi: Higher-dimensional localized patterns in excitable media. Physica  D 34 (1989), 115–144. DOI 10.1016/0167-2789(89)90230-3 | MR 0982383
[17] J. A.  Sethian: Level Set Methods. Cambridge University Press, New York, 1996. MR 1409367 | Zbl 0868.65059
[18] R. Temam: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam, 1979. MR 0603444 | Zbl 0426.35003
[19] A. Visintin: Models of Phase Transitions. Birkhäuser, Boston, 1996. MR 1423808 | Zbl 0882.35004
Partner of
EuDML logo