Article
Keywords:
Navier-Stokes equations; regularity of weak solutions; regular and singular points
Summary:
In the context of the weak solutions of the Navier-Stokes equations we study the regularity of the pressure and its derivatives in the space-time neighbourhood of regular points. We present some global and local conditions under which the regularity is further improved.
References:
                        
[1] L.  Caffarelli, R.  Kohn and L.  Nirenberg: 
Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), 771–831. 
DOI 10.1002/cpa.3160350604 | 
MR 0673830[3] C.  Foias, R.  Temam: 
Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations. J.  Math. Pures Appl. 58 (1979), 339–368. 
MR 0544257[4] G. P.  Galdi: 
An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I: Linearized and Steady Problems; Vol. II: Nonlinear Steady Problems. Springer-Verlag, New York-Berlin-Heidelberg, 1994. 
MR 1284205[6] O. A.  Ladyzhenskaya, G. A.  Seregin: 
On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J.  Math. Fluid Mech. 1 (1999), 356–387. 
DOI 10.1007/s000210050015 | 
MR 1738171[9] R.  Temam: 
The Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterodam-New York-Oxford, 1979. 
MR 0603444