[2] J.  Berkovits, P.  Drábek, H.  Leinfelder, V.  Mustonen, and G.  Tajčová: 
Time-periodic oscillations in suspension bridges: existence of unique solution. Nonlinear Anal., Real World Appl. 1 (2000), 345–362. 
MR 1791531[5] H . Gajewski, K.  Gröger, and K.  Zacharias: 
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. 
MR 0636412[6] J.  Glover, A. C.  Lazer, and P. J.  Mc Kenna: 
Existence and stability of large scale nonlinear oscillations in suspension bridges. Z. Angew. Math. Phys. 40 (1989), 171–200. 
DOI 10.1007/BF00944997 | 
MR 0990626[7] A.  Kufner, O.  John, and S. Fučík: 
Function Spaces. Academia, Prague, 1977. 
MR 0482102[9] A. C.  Lazer, P. J.  Mc Kenna: 
Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Review 32 (1989), 537–578. 
DOI 10.1137/1032120 | 
MR 1084570[11] J. L.  Lions: 
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969. (French) 
MR 0259693 | 
Zbl 0189.40603[12] J.  Malík: Variational formulations of some models of suspension and cable stayed bridges. European J. Mech.—Solids/A, Submitted.
[13] S. L.  Sobolev: 
Applications of Functional Analysis in Mathematical Physics. American Mathematical Society, Providence, 1963. 
MR 0165337 | 
Zbl 0123.09003[15] R.  Walther, B.  Houriet, W. Isler, P.  Moïa, and J. F. Klein: Cable Stayed Bridges. Thomas Telford, , 1999.
[16] K.  Yosida: 
Functional analysis. Springer-Verlag, Berlin-Götingen-Heidelberg, 1965. 
Zbl 0126.11504