Previous |  Up |  Next


hyperbolic systems; wave equation; evolution Galerkin schemes; Maxwell equations; linearized Euler equations; divergence-free; vorticity; dispersion
The subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical experiments for both the Maxwell and the linearized Euler equations.
[1] C. A. Balanis: Advance Engineering Electromagnetics. John Wiley & Sons, New York-Chichester-Brisbane-Toronto-Singapore, 1989.
[2] D. K. Cheng: Field and Wave Electromagnetics. Addison-Wesley Publishing Company, second edition, 1989.
[3] J. D. Jackson: Classical Electrodynamics. John Wiley & Sons, third edition, New York, 1999. MR 0436782 | Zbl 0920.00012
[4] M. Lukáčová-Medviďová, K. W. Morton, and G. Warnecke: Finite volume evolution, Galerkin metods for Euler equations of gas dynamics. Internat. J. Numer. Methods Fluids 40 (2002), 425–434. DOI 10.1002/fld.297 | MR 1932992
[5] M. Lukáčová-Medviďová, K. W. Morton, and G.  Warnecke: Evolution Galerkin methods for hyperbolic systems in two space dimensions. Math. Comp. 69 (2000), 1355–1348. DOI 10.1090/S0025-5718-00-01228-X | MR 1709154
[6] M. Lukáčová-Medviďová, J. Saibertová, and G. Warnecke: Finite volume evolution Galerkin methods for nonlinear hyperbolic systems. J.  Comput. Phys. 183 (2002), 533–562. DOI 10.1006/jcph.2002.7207 | MR 1947781
[7] M. Lukáčová-Medviďová, G.  Warnecke, and Y. Zahaykah: On the boundary conditions for EG-methods applied to the two-dimensional wave equation system. Z. Angew. Math. Mech. 84 (2004), 237–251. DOI 10.1002/zamm.200310103 | MR 2045490
[8] M. Lukáčová-Medviďová, G. Warnecke, and Y. Zahaykah: Third order finite volume evolution Galerkin (FVEG) methods for two-dimensional wave equation system. J. Numer. Math. 11 (2003), 235–251. MR 2018817
[9] S. Ostkamp: Multidimensional characteristic Galerkin schemes and evolution operators for hyperbolic systems. Math. Methods Appl. Sci. 20 (1997), 1111–1125. DOI 10.1002/(SICI)1099-1476(19970910)20:13<1111::AID-MMA903>3.0.CO;2-1 | MR 1465396
[10] G. Strang: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968), 506–517. DOI 10.1137/0705041 | MR 0235754
[11] Y. Zahaykah: Evolution Galerkin schemes and discrete boundary condition for multidimensional first order systems. PhD.  thesis, Magdeburg, 2002.
Partner of
EuDML logo