Previous |  Up |  Next


approximation of hemivariational inequalities; delamination; nonmonotone friction
The paper deals with approximations and the numerical realization of a class of hemivariational inequalities used for modeling of delamination and nonmonotone friction problems. Assumptions guaranteeing convergence of discrete models are verified and numerical results of several model examples computed by a nonsmooth variant of Newton method are presented.
[1] K. C. Chang: Variational methods for non-differentiable functionals and their applications for partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. DOI 10.1016/0022-247X(81)90095-0 | MR 0614246
[2] R. Glowinski, J.-L. Lions, R. Trémolières: Numerical Analysis of Variational Inequalities. Studies in Mathematics and its Applications, Vol. 8. North Holland, Amsterdam, New York, 1981. MR 0635927
[3] A. K. Green, W. H. Bowyer: The testing and analysis of novel top-hat stiffener fabrication methods for use in GRP  ships. Proceedings from the 1st  International Conference “On Composite Structures”, I. H.  Marshal (ed.), Applied Science Publishers, London, 1981, pp. 182–201.
[4] J. Haslinger, M. Miettinnen, and P. D. Panagiotopoulos: Finite Element Method for Hemivariational Inequalities. Theory Methods and Applications  35. Kluwer Academic Publishers, Dordrecht, 1999. MR 1784436
[5] L. Lukšan, J. Vlček: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83 A (1998), 373–391. MR 1650317
[6] L. Lukšan, J. Vlček: PBUN, PNEW—a bundle type algorithms for nonsmooth optimization. Technical Report No.  V-718, Sept. 1997.
[7] Topics in Nonsmooth Mechanics. J. J. Moreau, P. D. Panagiotopoulos, and G. Strang (eds.), Birkhäuser-Verlag, Basel, 1988. MR 0957086 | Zbl 0646.00014
[8] E. Moyson, D.  van Gemert: Experimentelle Prüfungen der Laminat-Theorie für Faservestärkte Verbundwerkstoffe. Proceedings Verbundwerkstoffe, Phasenverbindung und Mechanische Eigenschaften, Vol. I, G. Ondracek (ed.), Deutsche Gesellschaft für Metallkunde, Karlsruhe, 1985, pp. 99–115.
[9] P. D. Panagiotopolous: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser-Verlag, Basel-Boston-Stuttgart, 1985. MR 0896909
[10] P. D. Panagiotopoulos: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer-Verlag, Berlin, 1993. Zbl 0826.73002
[11] I. Roman, H. Harlet, and G. Marom: Stress intensity factor measurements in composite sandwich structures. In: Proceedings of the 1st International Conference on Composite Structures, I. H.  Marshal (ed.), Applied Science Publishers, London, 1981, pp. 633–645.
[12] M. M. Schwartz: Composite Materials Handbook. McGraw Hill, New York, 1984.
[13] N. S. Shidharan: Elastic and strength properties of continuous chopped glass fiber hybrid sheet molding compounds. Short Fiber Reinforced Composite Materials ASTM STP, Vol. 787, Philadelphia, 1982, pp. 167–179.
[14] J. G. Williams, M. D. Rhodes: Effect of resin on impact damage tolerance of graphite/epoxy laminates. Proceedings of the 6th International Conference on Composite Materials, Testing and Design ASTM STP, Vol. 787, Philadelphia, 1982, pp. 450–480.
Partner of
EuDML logo