[1] J. J.  Benedetto, M. W.  Frazier: 
Wavelets: Mathematics and Applications. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1994. 
MR 1247511[2] A.  Cohen: 
Wavelet Methods in Numerical Analysis. Handbook of Numerical Analysis, Vol.  VII, P. G. Ciarlet et al. (eds.), North-Holland/Elsevier, Amsterdam, 2000, pp. 417–711. 
MR 1804747 | 
Zbl 0976.65124[5] V.  Finěk: 
Daubechies wavelets and two-point boundary value problems. Appl. Math. 49 (2004), 465–481. 
MR 2086089[7] G.  Hanwei, Y.  Jiaxian, H.  Jianguo, and L.  Peiguo: The Numerical Integral Algorithm Based on Multiresolution Analysis. Preprint (Wavelet Digest), Department of Electronic Technique, NUDT, Changsha, 2001.
[8] A. K.  Louis, P.  Maaß, and A.  Rieder: 
Wavelets. Theorie und Anwendungen. Teubner, Stuttgart, 1994. 
MR 1371382[9] Y. Meyer: 
Ondelettes et Opérateurs  I: Ondelettes. Hermann Press, Paris, 1990; English translation: Wavelets and Operators. Cambridge University Press, Cambridge, 1992. 
MR 1085487 | 
Zbl 0694.41037[10] W.-Ch. Shann, J.-Ch.  Yan: Quadratures involving polynomials and Daubechies’ wavelets. Preprint, National Central University, Chung-Li, R.O.C., April 1994.
[11] W.  Sweldens, R.  Piessens: 
Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions. SIAM J.  Numer. Anal. 31 (1994), 1240–1264. 
DOI 10.1137/0731065 | 
MR 1286226[12] P. Wojtaszczyk: 
A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge, 1997. 
MR 1436437 | 
Zbl 0865.42026