Previous |  Up |  Next

Article

Title: On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory (English)
Author: Lü, Haishen
Author: O'Regan, Donal
Author: Agarwal, Ravi P.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 6
Year: 2005
Pages: 555-568
Summary lang: English
.
Category: math
.
Summary: We study the vector $p$-Laplacian \[ \left\rbrace \begin{array}{ll}-(| u^{\prime }| ^{p-2}u^{\prime })^{\prime }=\nabla F(t,u) \quad \text{a.e.}\hspace{5.0pt}t\in [0,T], u(0) =u(T),\quad u^{\prime }(0)=u^{\prime }(T),\quad 1<p<\infty . \end{array}\right. \qquad \mathrm{(*)}\] We prove that there exists a sequence $(u_n)$ of solutions of ($*$) such that $u_n$ is a critical point of $\varphi $ and another sequence $(u_n^{*}) $ of solutions of $(*)$ such that $u_n^{*}$ is a local minimum point of $\varphi $, where $\varphi $ is a functional defined below. (English)
Keyword: $p$-Laplacian equation
Keyword: periodic solution
Keyword: critical point theory
MSC: 34B15
MSC: 34C25
idZBL: Zbl 1099.34021
idMR: MR2181026
DOI: 10.1007/s10492-005-0037-8
.
Date available: 2009-09-22T18:24:10Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134623
.
Reference: [1] J.  Mawhin, M.  Willem: Critical Point Theory and Hamiltonian Systems.Springer-Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo, 1989. MR 0982267
Reference: [2] J.  Mawhin: Some boundary value problems for Hartman-type perturbations of the ordinary vector $p$-Laplacian.Nonlinear. Anal., Theory Methods Appl. 40A (2000), 497–503. Zbl 0959.34014, MR 1768905, 10.1016/S0362-546X(00)85028-2
Reference: [3] M.  Del Pino, R.  Manasevich, and A.  Murua: Existence and multiplicity of solutions with prescribed period for a second order O.D.E.Nonlinear. Anal., Theory Methods Appl. 18 (1992), 79–92. MR 1138643, 10.1016/0362-546X(92)90048-J
Reference: [4] C.  Fabry, D.  Fayyad: Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities.Rend. Ist. Mat. Univ. Trieste 24 (1992), 207–227. MR 1310080
Reference: [5] Z.  Guo: Boundary value problems of a class of quasilinear ordinary differential equations.Differ. Integral Equ. 6 (1993), 705–719. Zbl 0784.34018, MR 1202567
Reference: [6] H.  Dang, S. F.  Oppenheimer: Existence and uniqueness results for some nonlinear boundary value problems.J.  Math. Anal. Appl. 198 (1996), 35–48. MR 1373525, 10.1006/jmaa.1996.0066
Reference: [7] E.  Zeidler: Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators.Springer-Verlag, New York-Berlin-Heidelberg, 1990. Zbl 0684.47029, MR 1033498
Reference: [8] P.  Habets, R.  Manasevich, and F.  Zanolin: A nonlinear boundary value problem with potential oscillating around the first eigenvalue.J.  Differ. Equations 117 (1995), 428–445. MR 1325805, 10.1006/jdeq.1995.1060
Reference: [9] J. Mawhin: Periodic solutions of systems with $p$-Laplacian-like operators.In: Nonlinear Analysis and Applications to Differential Equations. Papers from the Autumn School on Nonlinear Analysis and Differential Equations, Lisbon, September 14–October 23, 1998. Progress in Nonlinear Differential Equations and Applications, Birkhäuser-Verlag, Boston, 1998, pp. 37–63. MR 1800613
Reference: [10] K.  Deimling: Nonlinear Functional Analysis.Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985. Zbl 0559.47040, MR 0787404
.

Files

Files Size Format View
AplMat_50-2005-6_4.pdf 352.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo