[1] I.  Babuška, J.  Osborn: 
Eigenvalue problems. Handbook of Numerical Analysis, Vol. II, Finite Element Method (Part  I), P. G.  Ciarlet, J. L.  Lions (eds.), North-Holland Publ., Amsterdam, 1991, pp. 641–787. 
MR 1115240[2] M.  Bercovier, O.  Pironneau: 
Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979), 211–224. 
DOI 10.1007/BF01399555 | 
MR 0549450[4] D.  Boffi, F.  Brezzi, and L.  Gastaldi: 
On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69 (2000), 121–140. 
DOI 10.1090/S0025-5718-99-01072-8 | 
MR 1642801[5] D.  Boffi, F.  Brezzi, and L.  Gastaldi: 
On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 25 (1997), 131–154. 
MR 1655512[6] F.  Brezzi, M.  Fortin: 
Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics Vol.  15. Springer-Verlag, New York, 1991. 
MR 1115205[7] B. M.  Brown, E. B.  Davies, P. K.  Jimack, and M. D. Mihajlović: 
A numerical investigation of the solution of a class of fourth-order eigenvalue problems. Proc. R. Soc. Lond. A  456 (2000), 1505–1521. 
DOI 10.1098/rspa.2000.0573 | 
MR 1808762[8] P. G.  Ciarlet: 
The Finite Element Method for Elliptic Problems. North-Holland Publ., Amsterdam, 1978. 
MR 0520174 | 
Zbl 0383.65058[9] P. G.  Ciarlet, P.-A.  Raviart: 
A mixed finite element method for the biharmonic equation. Aspects finite Elem. partial Differ. Equat., Proc. Symp. Madison, C.  de  Boor (ed.), Academic Press, New York, 1974, pp. 125–145. 
MR 0657977[10] V.  Girault, P.-A.  Raviart: 
Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin, 1986. 
MR 0851383[11] R.  Glowinski, O.  Pironneau: 
On a mixed finite element approximation of the Stokes problem. I: Convergence of the approximate solution. Numer. Math. 33 (1979), 397–424. 
DOI 10.1007/BF01399323 | 
MR 0553350[12] V.  Heuveline, R.  Rannacher: 
A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15 (2001), 107–138. 
DOI 10.1023/A:1014291224961 | 
MR 1887731[14] K.  Ishihara: 
A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), 399–414. 
DOI 10.2977/prims/1195189071 | 
MR 0509196[15] M.  Křížek: 
Comforming finite element approximation of the Stokes problem. Banach Cent. Publ. 24 (1990), 389–396. 
DOI 10.4064/-24-1-389-396[17] Q.  Lin, J.  Lin: Finite Element Methods: Accuracy and Improvement. China Sci. Tech. Press, Beijing, 2005.
[18] Q.  Lin, T.  Lu: 
Asymptotic expansions for finite element eigenvalues and finite element solution. Bonn Math. Schr. 158 (1984), 1–10. 
MR 0793412 | 
Zbl 0549.65072[19] Q.  Lin, N.  Yan: High Efficiency FEM Construction and Analysis. Hebei Univ. Press, , 1996.
[22] J.  Osborn: 
Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976), 185–197. 
DOI 10.1137/0713019 | 
MR 0447842 | 
Zbl 0334.76010[24] R.  Rannacher: 
Noncomforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33 (1979), 23–42. 
DOI 10.1007/BF01396493 | 
MR 0545740[26] R.  Verfürth: 
Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO, Anal. Numér. 18 (1984), 175–182. 
DOI 10.1051/m2an/1984180201751[27] J.  Wang, X.  Ye: 
Superconvergence of finite element approximations for the Stokes problem by the projection methods. SIAM J.  Numer. Anal. 39 (2001), 1001–1013. 
DOI 10.1137/S003614290037589X | 
MR 1860454