Previous |  Up |  Next

Article

Title: What is the smallest possible constant in Céa's lemma? (English)
Author: Chen, Wei
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 2
Year: 2006
Pages: 129-144
Summary lang: English
.
Category: math
.
Summary: We consider finite element approximations of a second order elliptic problem on a bounded polytopic domain in $\mathbb{R}^d$ with $d\in \lbrace 1,2,3,\ldots \rbrace $. The constant $C\ge 1$ appearing in Céa’s lemma and coming from its standard proof can be very large when the coefficients of an elliptic operator attain considerably different values. We restrict ourselves to regular families of uniform partitions and linear simplicial elements. Using a lower bound of the interpolation error and the supercloseness between the finite element solution and the Lagrange interpolant of the exact solution, we show that the ratio between discretization and interpolation errors is equal to $1+\mathcal O(h)$ as the discretization parameter $h$ tends to zero. Numerical results in one and two-dimensional case illustrating this phenomenon are presented. (English)
Keyword: supercloseness
Keyword: Lagrange finite elements
Keyword: Lagrange remainder
Keyword: lower estimates
Keyword: elliptic problems
Keyword: $d$-simplex
Keyword: uniform partitions
MSC: 35J25
MSC: 65N15
MSC: 65N30
idZBL: Zbl 1164.65495
idMR: MR2212310
DOI: 10.1007/s10492-006-0009-7
.
Date available: 2009-09-22T18:25:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134634
.
Reference: [1] I.  Babuška, A. K.  Aziz: Survey lectures on the mathematical foundations of the finite element method.Math. Found. Finite Elem. Method Appl. Part. Differ. Equations, A. K.  Aziz (ed.), Academic Press, New York, 1972, pp. 1–359. MR 0421106
Reference: [2] I.  Babuška, T.  Strouboulis, C. S.  Upadhyay, and S. K.  Gangaray: Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in the finite element solutions of Laplace’s, Poisson’s, and elasticity equations.Numer. Methods Partial Differ. Equations 12 (1996), 347–392. MR 1388445, 10.1002/num.1690120303
Reference: [3] J.  Brandts, M.  Křížek: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J.  Numer. Anal. 23 (2003), 489–505. MR 1987941, 10.1093/imanum/23.3.489
Reference: [4] J.  Brandts, M.  Křížek: Superconvergence of tetrahedral quadratic finite elements.J. Comput. Math. 23 (2005), 27–36. MR 2124141
Reference: [5] J.  Céa: Approximation variationnelle des problèmes aux limites.Ann. Inst. Fourier 14 (1964), 345–444. MR 0174846, 10.5802/aif.181
Reference: [6] P.  Clément: Approximation by finite element functions using local regularization.RAIRO Anal. Numér. 9 (1975), 77–84. MR 0400739
Reference: [7] C. M.  Chen: Optimal points of stresses for tetrahedron linear element.Natur. Sci. J.  Xiangtan Univ. 3 (1980), 16–24. (Chinese)
Reference: [8] L.  Chen: Superconvergence of tetrahedral linear finite elements.Internat. J.  Numer. Anal. Model. 3 (2006), 273–282. MR 2237882
Reference: [9] P.  G.  Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [10] G.  Goodsell, J. R.  Whiteman: Pointwise superconvergence of recovered gradients for piecewise linear finite element approximations to problems of planar linear elasticity.Numer. Methods Partial Differ. Equations 6 (1990), 59–74. MR 1034433, 10.1002/num.1690060105
Reference: [11] I.  Hlaváček, M.  Křížek: On a superconvergent finite element scheme for elliptic systems. I.  Dirichlet boundary condition.Apl. Mat. 32 (1987), 131–154. MR 0885758
Reference: [12] V.  Kantchev, R.  Lazarov: Superconvergence of the gradient of linear finite elements for 3D Poisson equation.In: Proc. Int. Symp. Optimal Algorithms, B.  Sendov (ed.), Bulgarian Acad. Sci., Sofia, 1986, pp. 172–182.
Reference: [13] M.  Křížek, P.  Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538
Reference: [14] M.  Křížek, P.  Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics Vol.  50.Longman Scientific & Technical, Harlow, 1990. MR 1066462
Reference: [15] M.  Křížek, P.  Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications.Kluwer Academic Publishers, Dordrecht, 1996. MR 1431889
Reference: [16] H. W.  Kuhn: Some combinatorial lemmas in topology.IBM  J. Res. Develop. 4 (1960), 518–524. Zbl 0109.15603, MR 0124038, 10.1147/rd.45.0518
Reference: [17] B.  Li: Lagrange interpolation and finite element superconvergence.Numer. Methods Partial Differ. Equations 20 (2004), 33–59. Zbl 1042.65092, MR 2020249, 10.1002/num.10078
Reference: [18] Q.  Lin, N. N.  Yan: The Construction and Analysis for Efficient Finite Elements.Hebei Univ. Publ. House, , 1996. (Chinese)
Reference: [19] L. A.  Oganesjan, L. A.  Ruhovec: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary.Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. (Russian) MR 0295599
Reference: [20] P.  Tong: Exact solutions of certain problems by finite-element method.AIAA  J. 7 (1969), 178–180. 10.2514/3.5067
Reference: [21] L. B.  Wahlbin: Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Math. Vol.  1605.Springer-Verlag, Berlin, 1995. MR 1439050
Reference: [22] J.  Xu, L.  Zikatanov: Some observations on Babuška and Brezzi theories.Numer. Math. 94 (2003), 195–202. MR 1971217, 10.1007/s002110100308
Reference: [23] Q. D.  Zhu: The derivative good points for the finite element method with 2-degree triangular element.Nat. Sci. J.  Xiangtan Univ. 1 (1981), 36–44. (Chinese)
.

Files

Files Size Format View
AplMat_51-2006-2_3.pdf 369.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo