[1] E.  Acerbi, G.  Mingione: 
Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156 (2001), 121–140. 
DOI 10.1007/s002050100117 | 
MR 1814973[2] H. J.  Choe: 
A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114 (1991), 383–394. 
DOI 10.1007/BF00376141 | 
MR 1100802 | 
Zbl 0733.35024[5] G.  Cupini, A. P.  Migliorini: 
Hölder continuity for local minimizers of a nonconvex variational problem. J.  Convex Anal. 10 (2003), 389–408. 
MR 2043864[6] G.  Cupini, R.  Petti: 
Morrey spaces and local regularity of minimizers of variational integrals. Rend. Mat. Appl., VII.  Ser. 21 (2001), 121–141. 
MR 1884939[8] M.  Eleuteri: 
Hölder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 8, 7-B (2004), 129–157. 
MR 2044264 | 
Zbl 1178.49045[9] L.  Esposito, F.  Leonetti, and G.  Mingione: 
Regularity results for minimizers of irregular integrals with $(p,q)$  growth. Forum Math. 14 (2002), 245–272. 
DOI 10.1515/form.2002.011 | 
MR 1880913[10] V.  Ferone, N.  Fusco: 
Continuity properties of minimizers of integral functionals in a limit case. J.  Math. Anal. Appl. 202 (1996), 27–52. 
DOI 10.1006/jmaa.1996.0301 | 
MR 1402586[11] I.  Fonseca, N.  Fusco: 
Regularity results for anisotropic image segmentation models. Ann. Sc. Norm. Super. Pisa 24 (1997), 463–499. 
MR 1612389[12] I.  Fonseca, N.  Fusco, and P.  Marcellini: 
An existence result for a nonconvex variational problem via regularity. ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95. 
DOI 10.1051/cocv:2002004 | 
MR 1925022[13] N.  Fusco, J.  Hutchinson: 
$C^{1,\alpha }$ partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1985), 121–143. 
DOI 10.1007/BF01171703 | 
MR 0808684[15] D.  Gilbarg, N. S.  Trudinger: 
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977. 
MR 0473443[16] E.  Giusti: 
Direct Methods in the Calculus of Variations. World Scientific, Singapore, 2003. 
MR 1962933 | 
Zbl 1028.49001