[2] Butnariu D., Klement E. P.: 
Triangular Norm–Based Measures and Games with Fuzzy Coalitions. Kluwer, Dordrecht 1993 
MR 2867321 | 
Zbl 0804.90145 
[3] Lucia P. de, Pták P.: 
Quantum probability spaces that are nearly classical. Bull. Polish Acad. Sci. Math. 40 (1992), 163–173 
MR 1401868 | 
Zbl 0765.60001 
[8] Kläy M. P., Foulis D. J.: 
Maximum likelihood estimation on generalized sample spaces: an alternative resolution of Simpson’s paradox. Found. Phys. 20 (1990), 777–799 
DOI 10.1007/BF01889691 | 
MR 1008686 
[9] Klement E. P., Mesiar R., Navara M.: Extensions of Boolean functions to $T$-tribes of fuzzy sets. BUSEFAL 63 (1995), 16–21
[11] Majerník V., Pulmannová S.: 
Bell inequalities on quantum logics. J. Math. Phys. 33 (1992), 2173–2178 
DOI 10.1063/1.529638 
[13] Mesiar R.: 
On the structure of $T_s$-tribes. Tatra Mountains Math. Publ. 3 (1993), 167–172 
MR 1278531 
[17] Navara M.: 
A characterization of triangular norm based tribes. Tatra Mountains Math. Publ. 3 (1993), 161–166 
MR 1278530 | 
Zbl 0799.28013 
[18] Navara M.: 
Algebraic approach to fuzzy quantum spaces. Demonstratio Math. 27 (1994), 589–600 
MR 1319404 | 
Zbl 0830.03032 
[19] Navara M.: 
On generating finite orthomodular sublattices. Tatra Mountains Math. Publ. 10 (1997), 109–117 
MR 1469286 | 
Zbl 0915.06004 
[21] Navara M., Pták P.: 
Uncertainty and dependence in classical and quantum logic – the role of triangular norms. To appear 
Zbl 0988.03096 
[23] Pták P., Pulmannová S.: 
Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht – Boston – London 1991 
MR 1176314 
[24] Pták P., Pulmannová S.: 
A measure–theoretic characterization of Boolean algebras among orthomodular lattices. Comment. Math. Univ. Carolin. 35 (1994), 205–208 
MR 1292596 | 
Zbl 0805.06010