Previous |  Up |  Next


Title: On the structure at infinity of linear delay systems with application to the disturbance decoupling problem (English)
Author: Rabah, Rabah
Author: Malabre, Michel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 6
Year: 1999
Pages: [668]-680
Summary lang: English
Category: math
Summary: The disturbance decoupling problem is studied for linear delay systems. The structural approach is used to design a decoupling precompensator. The realization of the given precompensator by static state feedback is studied. Using various structural and geometric tools, a detailed description of the feedback is given, in particular, derivative of the delayed disturbance can be needed in the realization of the precompensator. (English)
Keyword: linear delay system
Keyword: static state feedback
Keyword: decoupling problem
Keyword: disturbance
MSC: 93B51
MSC: 93B52
MSC: 93C05
MSC: 93C23
MSC: 93C73
idZBL: Zbl 1274.93108
idMR: MR1747968
Date available: 2009-09-24T19:29:05Z
Last updated: 2015-03-27
Stable URL:
Reference: [1] Hautus M. L. J.: The formal Laplace transform for smooth linear systems.In: Proc. of Internat. Symposium on Mathematical Systems Theory, Udine 1975 (Lecture Notes in Economics and Mathematical Systems 131), Springer–Verlag, Berlin pp. 29–47 MR 0682787
Reference: [2] Malabre M., Rabah R.: On infinite zeros for infinite dimensional systems.In: Progress in Systems and Control Theory 3, Realiz. Model. in Systems Theory, Vol. 1, Birkhaüser, Boston 1990, pp. 19–206 MR 1115331
Reference: [3] Malabre M., Rabah R.: Structure at infinity, model matching and disturbance rejection for linear systems with delays.Kybernetika 29 (1993), 5, 485–498 Zbl 0805.93008, MR 1264881
Reference: [4] Moog C.: Inversion, découplage, poursuite de modèle des systèmes non linéaires.PhD Thesis, ENSM, Nantes 1987
Reference: [5] Picard P., Lafay J.-F., Kučera V.: Model matching for linear systems with delays.In: Proc. of 13th IFAC Congress, San Francisco 1996, Vol. D, pp. 183–188
Reference: [6] Pandolfi L.: Disturbance decoupling and invariant subspaces for delay systems.Appl. Math. Optim. 14 (1986), 55–72 Zbl 0587.93039, MR 0826852, 10.1007/BF01442228
Reference: [7] Rabah R.: Structural properties and controllability for delay systems of neutral type.In: Proc. of the IFAC Conference on System Structure and Control, Nantes 1995, pp. 354–359
Reference: [8] Rabah R., Malabre M.: Structure at infinity for delay systems revisited.In: Proc. of IMACS and IEEE–SMC Multiconference CESA’96, Symposium on Modelling, Analysis and Simulation, Lille 1996, pp. 87–90
Reference: [9] Rabah R., Malabre M.: A note on decoupling for linear infinite dimensional systems.In: Proc. 4th IFAC Conf. on System Structure and Control, Bucharest 1997, pp. 78–83
Reference: [10] Rabah R., Malabre M.: The structure at infinity of linear delay systems and the row–by–row decoupling problem.In: Proc. of 7th IEEE Mediterranean Conference on Control and Automation, Haifa 1999, pp. 1845–1854
Reference: [11] Sename O., Rabah R., Lafay J.-F.: Decoupling without prediction of linear systems with delays: a structural approach.Systems Control Lett. 25 (1995), 387–395 Zbl 0877.93053, MR 1343224, 10.1016/0167-6911(94)00086-B
Reference: [12] Silverman L. M., Kitapçi A.: System structure at infinity.In: Colloque National CNRS, Développement et Utilisation d’Outils et Modèles Mathématiques en Automatique des Systèmes et Traitement du Signal, Belle–Ile 1983, Ed. CNRS, Vol. 3, pp. 413–424 Zbl 0529.93018, MR 0733951
Reference: [13] Tsoi A. C.: Recent advances in the algebraic system theory of delay differential equations.In: Recent Theoretical Developments in Control (M. J. Gregson, ed.), Academic Press, New York 1978, pp. 67–127 Zbl 0417.93003, MR 0534622
Reference: [14] Wonham W. M.: Linear Multivariable Control: A Geometric Approach.Third edition. Springer–Verlag, New York 1985 Zbl 0609.93001, MR 0770574


Files Size Format View
Kybernetika_35-1999-6_2.pdf 1.333Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo