Previous |  Up |  Next


block decoupling problem over a Noetherian ring; feedback law; principal ideal domain
The paper presents procedures to check solvability and to compute solutions to the Block Decoupling Problem over a Noetherian ring and procedures to compute a feedback law that assigns the coefficients of the compensated system while mantaining the decoupled structure over a Principal Ideal Domain. The algorithms have been implemented using MapleV® and CoCoA [CoCoA].
[1] Adams W. W., Loustaunau P.: An introduction to Gröbner bases. (Graduate Studies in Mathematics 3.) Amer. Math. Soc. 1996 MR 1287608 | Zbl 0803.13015
[2] Assan J., Lafay J. F., Perdon A. M.: An algorithm to compute maximal pre–controllability submodules over a Principal Ideal Domain. In: Proc. IFAC Workshop on Linear Time Delay Systems, Grenoble 1998, pp. 123–128
[3] Assan J., Lafay J. F., Perdon A. M.: Computation of maximal pre-controllability submodules over a Noetherian ring (to appear.
[4] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, N. J. 1992 MR 1149379 | Zbl 0758.93002
[5] Brewer J. W., Klinger L. C., Schmale W.: The dynamic feedback cyclization problem for Principal Ideal Domains. J. Pure Appl. Algebra (1994), 31–42
[6] Buchberger B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, University of Innsbruck, Innsbruck 1965
[8] Conte G., Perdon A. M.: The disturbance decoupling problem for systems over a ring. SIAM J. Control Optim. 33 (1995), 3, 750–764 DOI 10.1137/S0363012992235638 | MR 1327237 | Zbl 0831.93011
[9] Conte G., Perdon A. M.: The block decoupling problem for systems over a ring. IEEE Trans. Automat. Control 43 (1998), 11, 1600–1604 DOI 10.1109/9.728878 | MR 1652831 | Zbl 0964.93025
[10] Conte G., Perdon A. M., Lombardo A.: Block decoupling problem with coefficient assignment and stability for linear systems over Noetherian rings. In: Proc. IFAC Conference on System Structure and Control, Nantes 1998
[11] Emre E., Khargonekar P.: Regulation of split linear systems over rings; coefficient assignment and observers. IEEE Trans. Automat. Control AC–27 (1982), 1, 104–113 DOI 10.1109/TAC.1982.1102815 | MR 0673076 | Zbl 0502.93019
[12] Dübbelde J., Schmale W.: Normalformproblem und Koefficientenzuweisung bei Systemen über euklidischen Ringen. University of Oldenburg, 1994
[13] Hautus M. L. J.: Disturbance rejection for systems over rings. (Lecture Notes in Control and Infomation Sciences 58.) Springer–Verlag, Berlin 1984 DOI 10.1007/BFb0031071 | MR 0792124 | Zbl 0532.93044
[14] Inaba H., Ito N., Munaka T.: Decoupling and pole assignment for linear systems defined over a Principal Ideal Domain. In: Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin, R. E. Saeks, eds.), North Holland, Amsterdam 1988 MR 1031030
[15] Lang S.: Algebra. Second edition. Addison Wesley, Reading 1984 MR 0783636 | Zbl 1063.00002
[16] Sename O., Lafay J. F.: Decoupling of square linear systems with delays. IEEE Trans. Automat. Control 42 (1997), 5, 736–742 DOI 10.1109/9.580895 | MR 1454220 | Zbl 0910.93039
[17] Wonham M.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer–Verlag, New York 1985 MR 0770574 | Zbl 0609.93001
Partner of
EuDML logo