Previous |  Up |  Next


orthonormal functions; discrete time state-space model; predictive controller
Problems of the system identification using orthonormal functions are discussed and algorithms of computing parameters of the discrete time state- space model of the plant based on the generalized orthonormal functions and the Laguerre functions are derived. The adaptive LQ regulator and the predictive controller based on the Laguerre function model are also presented. The stability and the robustness of the closed loop using the predictive controller are investigated.
[1] Agamennoni O., Paolini E., Desages A.: On robust stability analysis of a control system using Laguerre series. Automatica 28 (1992), 4, 815–818 DOI 10.1016/0005-1098(92)90042-E | MR 1168940 | Zbl 0763.93065
[2] Bitmead R. R., Gevers M., Wertz V.: Adaptive Optimal Control. Prentice Hall, Sydney 1990 Zbl 0751.93052
[3] Dumont G. A., Fu Y.: Laguerre expansion of Voltera kernels. Internat. J. Adaptive Control Signal Processing 7 (1993), 367–382 DOI 10.1002/acs.4480070506
[4] Dumont G. A., Elnaggar A., Elshafei A.: Adaptive predictive control of systems with time–varying time delay. Internat. J. Adaptive Control Signal Processing 7 (1993), 91–101 DOI 10.1002/acs.4480070203 | Zbl 0782.93060
[5] Dumont G. A., Zervos C. C., Pageau G. L.: Laguerre–based adaptive control of pH in an industrial bleach plant extraction stage. Automatica 26 (1990), 4, 781–787 DOI 10.1016/0005-1098(90)90053-K | Zbl 0719.93056
[6] Elshafei A. L., Dumont G., Elnaggar A.: Perturbation analysis of GPC with one-step control horizon. Automatica 29 (1993), 725–728 MR 1113744
[7] Elshafei A. L., Dumont G., Elnaggar A.: Adaptive GPC based on Laguerre–filters modeling. Automatica 30 (1994), 12, 1913–1920 DOI 10.1016/0005-1098(94)90051-5 | MR 1311078
[8] Hejdiš J., Juráčková Ľ., Kozák Š.: Self–tuning controller based on Laguerre function for time–delay systems. In: IFAC Conference on System Structure and Control, Nantes 1998, pp. 669–675
[9] Hudzovič P.: Orthogonal Exponential Functions. Internal Report KASR FEI STU, Bratislava 1991
[10] Mäkilä P. M.: Approximation of stable systems by Laguerre filters. Automatica 26 (1990), 2, 333–345 DOI 10.1016/0005-1098(90)90127-4 | MR 1051989 | Zbl 0708.93007
[11] Oliveira G. H. C., Favier G., Dumont G., Amaral W. C.: Robust predictive control based on Laguerre filters modeling. In: Preprints IFAC, San Francisco 1996, pp. 375–380
[12] al V. Peterka et: Algorithms for Adaptive Microprocesor Control of Technological Plants. Institute of Information Theory and Automation of the Czechoslovak Academy of Sciences, Prague 1982
[13] Zervos C. C., Dumont G. A.: Deterministic adaptive control based on Laguerre series representation. Internat. J. Control 18 (1988), 6, 2333–2359 DOI 10.1080/00207178808906334 | MR 0976101 | Zbl 0656.93045
[14] Wahlberg B.: System identification using Laguerre models. IEEE Trans. Automat. Control 36 (1991), 5, 551–561 DOI 10.1109/9.76361 | MR 1101710 | Zbl 0738.93078
Partner of
EuDML logo