[1] Barbagli F., Marro, G., Prattichizzo D.: Solving signal decoupling problems through self-bounded controlled invariants. In: Proc. 39th IEEE Conference on Decision and Control (CDC 2000), Sydney 2000
[2] Basile G., Marro G.: L’invarianza rispetto ai disturbi studiata nello spazio degli stati. In: Rendiconti della LXX Riunione Annuale AEI, paper no. 1-4-01, Rimini 1969
[4] Basile G., Marro G.: 
A new characterization of some structural properties of linear systems: unknown-input observability, invertibility and functional controllability. Internat. J. Control 17 (1973), 5, 931–943 
DOI 10.1080/00207177308932438 | 
MR 0325195 | 
Zbl 0255.93009[5] Basile G., Hamano, F., Marro G.: Some new results on unknown input observability. In: Proc. Eighth Triennial World Congress of the International Federation of Automatic Control, Kyoto, Japan 1981, pp. 21–25
[6] Basile G., Marro G.: 
Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, NJ 1992 
MR 1149379 | 
Zbl 0758.93002[7] Bhattacharyya S. P.: 
Disturbance rejection in linear systems. Internat. J. Systems Science 5 (1974), 7, 931–943 
MR 0363580 | 
Zbl 0295.93003[8] Bitmead R. R., Gevers, M., Wertz V.: 
Adaptive Optimal Control-The Thinking Man’s GPC. Prentice Hall, Englewood Cliffs, NJ, 1990 
Zbl 0751.93052[9] Estrada M. Bonilla, Malabre M.: 
Necessary and sufficient conditions for disturbance decoupling with stability using PID control laws. IEEE Trans. Automat. Control AC-44 (1999), 6, 1311–1315 
DOI 10.1109/9.769398 | 
MR 1689159[10] Estrada M. Bonilla, Malabre M.: 
Structural conditions for disturbance decoupling with stability using proportional and derivative control laws. IEEE Trans. Automat. Control AC-46 (2001), 1, 160–165 
DOI 10.1109/9.898711 | 
MR 1809481[11] Chen B. M.: 
$H_\infty $ control and its applications. (Lecture Notes in Control and Inform. Sciences 235.), Springer–Verlag, New York 1999 
MR 1636909 | 
Zbl 0912.93003[12] Chen B. M.: 
Robust and $H_\infty $ Control. (Communications and Control Engineering Series.) Springer, New York 2000 
MR 1761689 | 
Zbl 0996.93002[13] Davison E. J., Scherzinger B. M.: 
Perfect control of the robust servomechanism problem. IEEE Trans. Automat. Control AC-32 (1987), 8, 689–701 
Zbl 0625.93051[18] Gross E., Tomizuka M.: 
Experimental flexible beam tip tracking control with a truncated series approximation to uncancelable inverse dynamics. IEEE Trans. Control Syst. Techn. 3 (1994), 4, 382–391 
DOI 10.1109/87.338659[20] Imai H., Shinozuka M., Yamaki T., Li, D., Kuwana M.: 
Disturbance decoupling by feedforward and preview control. Trans. ASME J. Dynamic Systems, Measurement Control 105 (1983), 3, 11–17 
DOI 10.1115/1.3139721 | 
Zbl 0512.93029[22] Malabre M., Kučera V.: 
Infinite structure and exact model matching problem: a geometric approach. IEEE Trans. Automat. Control AC-29 (1982), 3, 266–268 
DOI 10.1109/TAC.1984.1103502[23] Marro G., Fantoni M.: Using preaction with infinite or finite preview for perfect or almost perfect digital tracking. In: Proceedings of the Melecon’96 – 8th Mediterranean Electrotechnical Conference, Bari 1996, Vol. 1, pp. 246–249
[24] Marro G., Prattichizzo, D., Zattoni E.: 
Geometric insight into discrete-time cheap and singular linear quadratic Riccati (LQR) problems. IEEE Trans. Automat. Control 47 (2002), 1 
DOI 10.1109/9.981727 | 
MR 1879695[25] Marro G., Prattichizzo, D., Zattoni E.: ${H}_2$ optimal decoupling of previewed signals with FIR systems. In: Proc. 1st IFAC Symposium on System Structure and Control (SSSC 2001), (P. Horáček, ed.), Prague 2001
[26] Marro G., Prattichizzo, D., Zattoni E.: A unified algorithmic setting for signal–decoupling compensators and unknown–input observers. In: Proc. 39th Conference on Decision and Control (CDC 2000), Sydney 2000
[27] Marro G., Prattichizzo, D., Zattoni E.: A nested computational scheme for discrete-time cheap and singular LQ control. In: Proc. 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation (IMACS 2000), Lausanne 2000
[28] Marro G., Prattichizzo, D., Zattoni E.: Convolution profiles for noncausal inversion of multivariable discrete-time systems. In: Proc. 8th IEEE Mediterranean Conference on Control & Automation (MED 2000), (P. P. Groumpos, N. T. Koussoulas, and P. J. Antsaklis, eds.), University of Patras, Rio 2000
[29] Marro G., Prattichizzo, D., Zattoni E.: An algorithmic solution to the discrete-time cheap and singular LQR problems. In: Proc. 14th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2000), Perpignan 2000
[32] Qiu L., Davison E. J.: 
Performance limitations of non-minimum phase systems in the servomechanism problem. IEEE Trans. Automat. Control 29 (1993), 2, 337–349 
MR 1211291 | 
Zbl 0778.93053[33] Saberi A., Sannuti, P., Chen B. M.: $H_2$ Optimal Control. (System and Control Engineering.) Prentice Hall International, London 1995
[34] Saberi A., Stoorvogel A. A., Sannuti P.: 
Control of linear systems with regulation and input constraints. (Communications and Control Engineering Series.) Springer, New York 2000 
MR 1756793 | 
Zbl 0977.93001[37] Trentelman H. L., Stoorvogel A. A., Hautus M.: 
Control theory for linear systems. (Communications and Control Engineering Series.) Springer, New York 2001 
MR 1851149 | 
Zbl 0963.93004[39] Wonham W. M.: 
Linear Multivariable Control: A Geometric Approach. Third edition. Springer, New York 1985 
MR 0770574 | 
Zbl 0609.93001