Article
Keywords:
discrete-event dynamic systems; max-plus algebra; systems of linear equations; approximation
Summary:
We propose an efficient method for finding a Chebyshev-best soluble approximation to an insoluble system of linear equations over max-plus algebra.
References:
                        
[1] Baccelli F. L., Cohen G., Olsder G. J., Quadrat J. P.: 
Synchronization and Linearity, An Algebra for Discrete Event Systems. Wiley, Chichester 1992 
MR 1204266 | 
Zbl 0824.93003[2] Cechlárová K.: 
A note on unsolvable systems of max-min (fuzzy) equations. Linear Algebra Appl. 310 (2000), 123–128 
MR 1753171 | 
Zbl 0971.15002[3] Cechlárová K., Diko P.: 
Resolving infeasibility in extremal algebras. Linear Algebra Appl. 290 (1999), 267–273 
MR 1672997 | 
Zbl 0932.15009[4] A.Cuninghame-Green R.: 
Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166). Springer, Berlin 1979 
MR 0580321[5] Cuninghame-Green R. A., Cechlárová K.: 
Residuation in fuzzy algebra and some applications. Fuzzy Sets and Systems 71 (1995), 227–239 
MR 1329610 | 
Zbl 0845.04007[6] Schutter B. De: Max-Algebraic System Theory for Discrete Event Systems. Thesis. Katholieke Universiteit Leuven, Belgium 1996