Previous |  Up |  Next


Title: Robust pole placement for second-order systems: an LMI approach (English)
Author: Henrion, Didier
Author: Šebek, Michael
Author: Kučera, Vladimír
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 1
Year: 2005
Pages: [1]-14
Summary lang: English
Category: math
Summary: Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix. (English)
Keyword: polynomial matrix
Keyword: second-order linear systems
Keyword: LMI
Keyword: pole placement
Keyword: robust control
MSC: 62A10
MSC: 62F15
MSC: 93B35
MSC: 93B55
MSC: 93D09
MSC: 93E12
idZBL: Zbl 1249.93169
idMR: MR2130481
Date available: 2009-09-24T20:06:24Z
Last updated: 2015-03-23
Stable URL:
Reference: [1] Ackermann J.: Robust Control.Systems with Uncertain Physical Parameters. Springer Verlag, Berlin 1993 Zbl 1054.93019, MR 1266389
Reference: [2] Barb F. D., Ben-Tal, A., Nemirovski A.: Robust dissipativity of interval uncertain systems.SIAM J. Control Optim. 41 (2002), 6, 1661–1695 10.1137/S0363012901398174
Reference: [3] Bernussou J., Peres P. L. D., Geromel J. C.: A linear programming oriented procedure for quadratic stabilization of uncertain systems.Systems Control Lett. 13 (1989) 65–72 Zbl 0678.93042, MR 1006849, 10.1016/0167-6911(89)90022-4
Reference: [4] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory.SIAM Studies in Applied Mathematics, Philadelphia, Pennsylvania 1994 Zbl 0816.93004, MR 1284712
Reference: [5] Chilali M., Gahinet P.: $H_{\infty }$ design with pole placement constraints: An LMI approach.IEEE Trans. Automat. Control 41 (1996), 3, 358–367 MR 1382985, 10.1109/9.486637
Reference: [6] Chu E. K., Datta B. N.: Numerically robust pole assignment for second-order systems.Internat. J. Control 64 (1996), 1113–1127 Zbl 0850.93318, MR 1664806, 10.1080/00207179608921677
Reference: [7] Datta B. N., Elhay, S., Ram Y. M.: Orthogonality and partial pole assignment for the symmetric definite quadratic pencil.Linear Algebra Appl. 257 (1997), 29–48, 1997 Zbl 0876.15009, MR 1441702
Reference: [8] Diwekar A. M., Yedavalli R. K.: Stability of matrix second-order systems: new conditions and perspectives.IEEE Trans. Automat. Control 44 (1999), 9, 1773–1777 Zbl 0958.93081, MR 1710122, 10.1109/9.788551
Reference: [9] Duan G. R., Liu G. P.: Complete parametric approach for eigenstructure assignment in a class of second-order linear systems.Automatica 38 (2002), 4, 725–729 Zbl 1009.93036, MR 2131479, 10.1016/S0005-1098(01)00251-5
Reference: [10] Ghaoui L. El, Oustry, F., Lebret H.: Robust solutions to uncertain semidefinite programs.SIAM J. Optim. 9 (1998), 1, 33–52 Zbl 0960.93007, MR 1660106, 10.1137/S1052623496305717
Reference: [11] Genin Y., Nesterov, Y., Dooren P. Van: Optimization over Positive Polynomial Matrices.In: Proc. Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000
Reference: [12] Henrion D., Arzelier, D., Peaucelle D.: Positive polynomial matrices and improved LMI robustness conditions.Automatica 39 (2003), 8, 1479–1485 Zbl 1037.93027, MR 2142253
Reference: [13] Henrion D., Arzelier D., Peaucelle, D., Šebek M.: An LMI condition for robust stability of polynomial matrix polytopes.Automatica 37 (2001), 3, 461–468 Zbl 0982.93057, MR 1843990, 10.1016/S0005-1098(00)00170-9
Reference: [14] Henrion D., Bachelier, O., Šebek M.: D-stability of polynomial matrices.Internat. J. Control 74 (2001), 8, 845–856 Zbl 1011.93083, MR 1832952
Reference: [15] Inman D. J., Kress A.: Eigenstructure assignment using inverse eigenvalue methods.AIAA J. Guidance, Control and Dynamics 18 (1995), 3, 625–627 10.2514/3.21433
Reference: [16] Nichols N. K., Kautsky J.: Robust eigenstructure assignment in quadratic matrix polynomials: nonsingular case.SIAM J. Matrix Analysis Appl. 23 (2001), 1, 77–102 Zbl 0995.65069, MR 1856600, 10.1137/S0895479899362867
Reference: [17] Oliveira M. C. de, Bernussou, J., Geromel J. C.: A new discrete-time robust stability condition.Systems Control Lett. 37 (1999), 261–265 Zbl 0948.93058, MR 1751256, 10.1016/S0167-6911(99)00035-3
Reference: [18] Peaucelle D., Arzelier D., Bachelier, O., Bernussou J.: A new robust D-stability condition for real convex polytopic uncertainty.Systems Control Lett. 40 (2000), 21–30 Zbl 0977.93067, MR 1829071, 10.1016/S0167-6911(99)00119-X
Reference: [19] Peaucelle D., Henrion, D., Labit Y.: SeDuMi Interface: A user-friendly free Matlab package for defining LMI problems.In: Proc. IEEE Conference on Computer-Aided Control System Design, Glasgow 2002
Reference: [21] Skelton R. E., Iwasaki, T., Grigoriadis K.: A Unified Algebraic Approach to Linear Control Design.Taylor and Francis, London 1998 MR 1484416
Reference: [23] Tisseur F., Higham N. J.: Structured pseudospectra for polynomial eigenvalue problems, with applications.SIAM J. Matrix Analysis Appl. 23 (2001), 1, 187–208 Zbl 0996.65042, MR 1856605, 10.1137/S0895479800371451
Reference: [24] Tisseur F., Meerbergen K.: The quadratic eigenvalue problem.SIAM Rev. 43 (2001), 2, 235–286 Zbl 0985.65028, MR 1861082, 10.1137/S0036144500381988


Files Size Format View
Kybernetika_41-2005-1_1.pdf 2.207Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo