Previous |  Up |  Next


Title: Classes of fuzzy measures and distortion (English)
Author: Valášková, Ľubica
Author: Struk, Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 2
Year: 2005
Pages: [205]-212
Summary lang: English
Category: math
Summary: Distortion of fuzzy measures is discussed. A special attention is paid to the preservation of submodularity and supermodularity, belief and plausibility. Full characterization of distortion functions preserving the mentioned properties of fuzzy measures is given. (English)
Keyword: fuzzy measure
Keyword: distorted measure
Keyword: belief measure
Keyword: plausibility measure
MSC: 03E72
MSC: 28E10
idZBL: Zbl 1249.28032
idMR: MR2138768
Date available: 2009-09-24T20:08:12Z
Last updated: 2015-03-23
Stable URL:
Reference: [1] Aumann R. J., Shapley L. S.: Values of Non-Atomic Games.Princeton University Press, Princeton 1974 Zbl 0311.90084, MR 0378865
Reference: [2] Bronevich A. G.: Aggregation operators of fuzzy measures.Properties of inheritance, submitted
Reference: [3] Bronevich A. G., Lepskiy A. E.: Operators for Convolution of Fuzzy Measures.In: Soft Methods in Probability, Statistics and Data Analysis, Advances in Soft Computing, Physica–Verlag, Heidelberg 2002, pp. 84–91 MR 1987678
Reference: [4] Denneberg D.: Non-Additive Measure and Integral.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0968.28009, MR 1320048
Reference: [5] Dubois D., Prade H.: Possibility Theory.Plenum Press, New York 1998 Zbl 1213.68620, MR 1104217
Reference: [6] Dzjadyk V. K.: Vvedenie v teoriju ravnomernogo približenia funkcij polinomami.Nauka, Moskva 1977
Reference: [7] Pap E.: Null-Additive Set Functions.Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 1995 Zbl 1003.28012, MR 1368630
Reference: [8] (ed.) E. Pap: Handbook on Measure Theory.Elsevier, Amsterdam 2002
Reference: [9] Struk P., Valášková Ĺ.: Preservation of distinguished fuzzy measure classes by distortion.In: Uncertainty Modelling 2003, Publishing House of STU, Bratislava 2003, pp. 48–51 Zbl 1109.28303
Reference: [10] Stupňanová A., Struk P.: Pessimistic and optimistic fuzzy measures on finite sets.In: MaGiA 2003, Publishing House of STU, Bratislava 2003, pp. 94–100
Reference: [11] Wang Z., Klir G.: Fuzzy Measure Theory.Plenum Press, New York – London 1992 Zbl 0812.28010, MR 1212086


Files Size Format View
Kybernetika_41-2005-2_7.pdf 861.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo