Previous |  Up |  Next


mixture operator; generalized mixture operator; monotonicity of the mixture operator; quasi-arithmetic mean; ordinal approach
We present some properties of mixture and generalized mixture operators, with special stress on their monotonicity. We introduce new sufficient conditions for weighting functions to ensure the monotonicity of the corresponding operators. However, mixture operators, generalized mixture operators neither quasi-arithmetic means weighted by a weighting function need not be non- decreasing operators, in general.
[1] Bajraktarevíc M.: Sur une équation fonctionnelle aux valeurs moyennes. Glas. Mat. Fyz. i Astr. 13 (1958), 243–248 MR 0123111 | Zbl 0084.34401
[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: A review of aggregation operators. Servicio de Publicaciones de la U. A. H., Madrid 2001 MR 1821982
[3] Calvo T., Mayor, G., (eds.), Mesiar: Aggregation Operators. New Trends and Applications. Physica–Verlag, Heidelberg 2002 MR 1936383 | Zbl 0983.00020
[4] Calvo T., Mesiar, R., Yager R. R.: Quantitative Weights and Aggregation, Fellow. IEEE Trans. Fuzzy Systems 2 (2004), 1, 62–69 DOI 10.1109/TFUZZ.2003.822679 | MR 2073568
[5] Edwards W., Newman J. R.: Multiattribute Evaluation. Quantitative Applications in the Social Sciences. Sage Publications, Beverly Hills, CA 1982
[6] Fodor J. C., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
[7] Kolesárová A.: On the comparison of quasi-arithmtic means. Busefal 80 (1999), 33–34
[8] Kolesárová A.: Limit properties of quasi-arithmetic means. Fuzzy Sets and Systems 124 (2001), 1, 65–71 DOI 10.1016/S0165-0114(00)00125-1 | MR 1859779 | Zbl 0989.03060
[9] Klir G. J., Folger T. A.: Fuzzy Sets. Uncertainty, and Information. Prentice Hall, Englewood Cliffs, New Jersey 1988 MR 0930102 | Zbl 0675.94025
[10] Losonczi L.: Über eine neue Klasse von Mittelwerte. Acta Sci. Math. 9, Univ. Szeged 32 (1971), 71–78 MR 0311859
[11] Losonczi L.: Equality of two variable weighted means: reduction to differential equatios. Aequationnes Math. 58 (1999), 223–241 DOI 10.1007/s000100050110 | MR 1715394
[12] Ribeiro R. A., Pereira R. A. M.: Aggregation with generalized mixture operators using weighting functions. Fuzzy Sets and Systems 137 (2003), 43–58 MR 1992697 | Zbl 1041.91024
[13] Pereira R. A. M., Pasi G.: On non-monotonic aggregation: Mixture operators. In: Proc. 4th Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE’99) and 2nd Internat. Conference on Soft and Intelligent Computing (SIC’99), Budapest 1999
[14] Ribeiro R. A., Pereira R. A. M.: Weights as functions of attribute satisfaction values. In: Proc. Workshop on Preference Modelling and Applications (EUROFUSE), Granada 2001
[15] Ribeiro R. A., Pereira R. A. M.: Generalized mixture operators using weighting functions: A comparative study with WA and OWA. European J. Oper. Res. 145 (2003), 329–342 DOI 10.1016/S0377-2217(02)00538-6 | Zbl 1011.90504
[16] Yager R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Systems Man Cybernet. 18 (1988), 183–190 DOI 10.1109/21.87068 | MR 0931863
Partner of
EuDML logo