Previous |  Up |  Next


Title: Homogeneous aggregation operators (English)
Author: Rückschlossová, Tatiana
Author: Rückschloss, Roman
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 3
Year: 2006
Pages: 279-286
Summary lang: English
Category: math
Summary: Recently, the utilization of invariant aggregation operators, i.e., aggregation operators not depending on a given scale of measurement was found as a very current theme. One type of invariantness of aggregation operators is the homogeneity what means that an aggregation operator is invariant with respect to multiplication by a constant. We present here a complete characterization of homogeneous aggregation operators. We discuss a relationship between homogeneity, kernel property and shift-invariance of aggregation operators. Several examples are included. (English)
Keyword: aggregation operator
Keyword: homogeneity
Keyword: kernel property
MSC: 03E72
MSC: 26B99
MSC: 68T37
idZBL: Zbl 1249.26024
idMR: MR2253389
Date available: 2009-09-24T20:15:52Z
Last updated: 2015-03-28
Stable URL:
Reference: [1] Aczél J., Gronau, D., Schwaiger J.: Increasing solutions of the homogeneity equation and similar equations.J. Math. Anal. Appl. 182 (1994), 436–464 MR 1269471, 10.1006/jmaa.1994.1097
Reference: [2] Calvo T., Mesiar R.: Stability of aggregation operators.In: Proc. EUSFLAT’2001, Leicester 2001, pp. 475–478 MR 1821982
Reference: [3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: Basic concepts, issues and properties.In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–105 MR 1936383
Reference: [4] Calvo T., Mesiar, R., Yager R. R.: Quantitative weights and aggregation.IEEE Trans. Fuzzy Systems 12 (2004), 1, 62–69 MR 2073568, 10.1109/TFUZZ.2003.822679
Reference: [5] Dujmovic J. J.: Weighted conjuctive and disjunctive means and their application in system evaluation.Univ. Beograd Publ. Elektrotehn. Fak. 483 (1974), 147–158 MR 0378884
Reference: [6] Grabisch M.: Symmetric and asymmetric integrals: the ordinal case.In: Proc. IIZUKA’2000, Iizuka 2000, CD-rom
Reference: [7] Grabisch M., Murofushi, T., Sugeno M., (eds.) M.: Fuzzy Measures and Integrals.Theory and Applications. Physica–Verlag, Heidelberg 2000 Zbl 0935.00014, MR 1767776
Reference: [8] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty, and Information.Prentice Hall, Englewood Cliffs, New Jersey 1988 Zbl 0675.94025, MR 0930102
Reference: [9] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators.In: Proc. AGOP’2001, Oviedo 2001, pp. 71–75
Reference: [10] Lázaro J., Rückschlossová, T., Calvo T.: Shift invariant binary aggregation operators.Fuzzy Sets and Systems 142 (2004), 51–62 Zbl 1081.68106, MR 2045342, 10.1016/j.fss.2003.10.031
Reference: [11] Mesiar R., Rückschlossová T.: Characterization of invariant aggregation operators.Fuzzy Sets and Systems 142 (2004), 63–73 Zbl 1049.68133, MR 2045343, 10.1016/j.fss.2003.10.032
Reference: [12] Nagumo M.: Über eine Klasse der Mittelwerte.Japan. J. Math. 7 (1930), 71–79
Reference: [13] Rückschlossová T.: Aggregation Operators and Invariantness.Ph.D. Thesis, Slovak University of Technology, Bratislava 2004
Reference: [14] Zadeh L. A.: Fuzzy sets.Inform. and Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X


Files Size Format View
Kybernetika_42-2006-3_3.pdf 2.585Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo