Previous |  Up |  Next

# Article

Full entry | PDF   (0.3 MB)
Keywords:
probability logic; conditional; modus ponens; system p
Summary:
An important field of probability logic is the investigation of inference rules that propagate point probabilities or, more generally, interval probabilities from premises to conclusions. Conditional probability logic (CPL) interprets the common sense expressions of the form “if ..., then ...” by conditional probabilities and not by the probability of the material implication. An inference rule is probabilistically informative if the coherent probability interval of its conclusion is not necessarily equal to the unit interval \$[0,1]\$. Not all logically valid inference rules are probabilistically informative and vice versa. The relationship between logically valid and probabilistically informative inference rules is discussed and illustrated by examples such as the modus ponens or the affirming the consequent. We propose a method to evaluate the strength of CPL inference rules. Finally, an example of a proof is given that is purely based on CPL inference rules.
References:
[1] Adams E. W.: The Logic of Conditionals. Reidel, Dordrecht 1975 MR 0485189 | Zbl 0324.02002
[2] Biazzo V., Gilio A.: A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments. Internat. J. Approx. Reason. 24 (2000), 2-3, 251–272 DOI 10.1016/S0888-613X(00)00038-4 | MR 1766286 | Zbl 0995.68124
[3] Biazzo V., Gilio A., Lukasiewicz, T., Sanfilippo G.: Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in System P. J. Appl. Non-Classical Logics 12 (2002), 2, 189–213 DOI 10.3166/jancl.12.189-213 | MR 1949978 | Zbl 1038.03023
[4] Biazzo V., Gilio A., Lukasiewicz, T., Sanfilippo G.: Probabilistic logic under coherence: Complexity and algorithms. Ann. Math. Artif. Intell. 45 (2005), 1-2, 35–81 DOI 10.1007/s10472-005-9005-y | MR 2220432 | Zbl 1083.03027
[5] Calabrese P. G., Goodman I. R.: Conditional event algebras and conditional probability logics. In: Proc. Internat. Workshop Probabilistic Methods in Expert Systems (R. Scozzafava, ed.), Societa Italiana di Statistica, Rome 1993, pp. 1–35
[6] Calabrese P. G.: Conditional events: Doing for logic and probability what fractions do for integer arithmetic. In: Proc.“The Notion of Event in Probabilistic Epistemology”, Dipartimento di Matematica Applicata “Bruno de Finetti”, Triest 1996, pp. 175–212
[7] Coletti G.: Coherent numerical and ordinal probabilistic assessment. IEEE Trans. Systems Man Cybernet. 24 (1994), 1747–1754 DOI 10.1109/21.328932 | MR 1302033
[8] Coletti G., Scozzafava, R., Vantaggi B.: Probabilistic reasoning as a general unifying tool. In: ECSQARU 2001 (S. Benferhat and P. Besnard, eds., Lecture Notes in Artificial Intelligence 2143), Springer–Verlag, Berlin 2001, pp. 120–131 Zbl 1005.68549
[9] Coletti G., Scozzafava R.: Probabilistic Logic in a Coherent Setting. Kluwer, Dordrecht 2002 MR 2042026 | Zbl 1040.03017
[10] Finetti B. de: Theory of Probability (Vol. 1 and 2). Wiley, Chichester 1974
[11] Fagin R., Halpern J. Y., Megiddo N.: A logic for reasoning about probabilities. Inform. and Comput. 87 (1990), 78–128 DOI 10.1016/0890-5401(90)90060-U | MR 1055950 | Zbl 0811.03014
[12] Frisch A., Haddawy P.: Anytime deduction for probabilistic logic. Artif. Intell. 69 (1994), 93–122 DOI 10.1016/0004-3702(94)90079-5 | MR 1294875 | Zbl 0809.03016
[13] Gilio A.: Probabilistic consistency of conditional probability bounds. In: Advances in Intelligent Computing (B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh, eds., Lecture Notes in Computer Science 945), Springer–Verlag, Berlin 1995
[14] Gilio A.: Probabilistic reasoning under coherence in System P. Ann. Math. Artif. Intell. 34 (2002), 5–34 DOI 10.1023/A:1014422615720 | MR 1895469 | Zbl 1014.68165
[15] Hailperin T.: Sentential Probability Logic. Origins, Development, Current Status, and Technical Applications. Lehigh University Press, Bethlehem 1996 MR 1437603 | Zbl 0922.03026
[16] Kraus S., Lehmann, D., Magidor M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44 (1990), 167–207 DOI 10.1016/0004-3702(90)90101-5 | MR 1072012 | Zbl 0782.03012
[17] Lukasiewicz T.: Local probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events. Internat. J. Approx. Reason. 21 (1999), 23–61 DOI 10.1016/S0888-613X(99)00006-7 | MR 1693211 | Zbl 0961.68135
[18] Lukasiewicz T.: Weak nonmonotonic probabilistic logics. Artif. Intell. 168 (2005), 119–161 DOI 10.1016/j.artint.2005.05.005 | MR 2175580 | Zbl 1132.68737
[19] Pfeifer N., Kleiter G. D.: Towards a mental probability logic. Psychologica Belgica 45 (2005), 1, 71–99. Updated version at: http://www.users.sbg.ac.at/~pfeifern/ DOI 10.5334/pb-45-1-71
[20] Pfeifer N., Kleiter G. D.: Towards a probability logic based on statistical reasoning. In: Proc. 11th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Vol. 3, Editions E. D. K., Paris 2006, pp. 2308–2315
[21] Sobel J. H.: Modus Ponens and Modus Tollens for Conditional Probabilities,, Updating on Uncertain Evidence. Technical Report, University of Toronto 2005. http://www.scar.utoronto.ca/~sobel/
[22] Wagner C.: Modus Tollens probabilized. British J. Philos. Sci. 55 (2004), 747–753 DOI 10.1093/bjps/55.4.747 | MR 2115533 | Zbl 1062.03015

Partner of