Previous |  Up |  Next


Title: Marginalization in multidimensional compositional models (English)
Author: Bína, Vladislav
Author: Jiroušek, Radim
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 4
Year: 2006
Pages: 405-422
Summary lang: English
Category: math
Summary: Efficient computational algorithms are what made graphical Markov models so popular and successful. Similar algorithms can also be developed for computation with compositional models, which form an alternative to graphical Markov models. In this paper we present a theoretical basis as well as a scheme of an algorithm enabling computation of marginals for multidimensional distributions represented in the form of compositional models. (English)
Keyword: compositional models
Keyword: marginalization
Keyword: Bayesian network
MSC: 60E99
MSC: 65C50
MSC: 68T37
idZBL: Zbl 1249.65010
idMR: MR2280521
Date available: 2009-09-24T20:17:08Z
Last updated: 2015-03-29
Stable URL:
Reference: [1] Badsberg J. H.: An Environment for Graphical Models.Ph.D. Thesis, Aalborg University 1995.
Reference: [3] Jensen F. V.: Bayesian Networks and Decision Graphs.Springer Verlag, New York 2001 MR 1876880
Reference: [4] Jiroušek R.: Marginalization in composed probabilistic models.In: Proc. 16th Conf. Uncertainty in Artificial Intelligence UAI’00 (C. Boutilier and M. Goldszmidt, eds.), Morgan Kaufmann, San Francisco 2000, pp. 301–308
Reference: [5] Jiroušek R.: Decomposition of multidimensional distributions represented by perfect sequences.Ann. Math. and Artificial Intelligence 35 (2002), 215–226 Zbl 1004.60010, MR 1899952, 10.1023/A:1014591402750
Reference: [6] Jiroušek R.: What is the difference between Bayesian networks and compositional models? In: Proc.7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty (H. Noguchi, H. Ishii, M. Inuiguchi, eds.), Awaji Yumebutai ICC 2004, pp. 191–196
Reference: [7] Lauritzen S. L.: Graphical Models.Clarendon Press, Oxford 1996 Zbl 1055.62126, MR 1419991
Reference: [8] Shachter R. D.: Evaluating influence diagrams.Oper. Res. 34 (1986), 871–890 MR 0886655, 10.1287/opre.34.6.871
Reference: [9] Shachter R. D.: Probabilistic inference and influence diagrams.Oper. Res. 36 (1988), 589–604 Zbl 0651.90043, 10.1287/opre.36.4.589
Reference: [10] Shafer G.: Probabilistic Expert Systems.SIAM, Philadelphia 1996 Zbl 0866.68108, MR 1400892


Files Size Format View
Kybernetika_42-2006-4_2.pdf 913.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo