| Title:
             | 
A necessity measure optimization approach to linear programming problems with oblique fuzzy vectors (English) | 
| Author:
             | 
Inuiguchi, Masahiro | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 | 
| Volume:
             | 
42 | 
| Issue:
             | 
4 | 
| Year:
             | 
2006 | 
| Pages:
             | 
441-452 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper, a necessity measure optimization model of linear programming problems with fuzzy oblique vectors is discussed. It is shown that the problems are reduced to linear fractional programming problems. Utilizing a special structure of the reduced problem, we propose a solution algorithm based on Bender’s decomposition. A numerical example is given. (English) | 
| Keyword:
             | 
fuzzy linear programming | 
| Keyword:
             | 
oblique fuzzy vector | 
| Keyword:
             | 
necessity measure | 
| Keyword:
             | 
Bender’s decomposition | 
| MSC:
             | 
49M27 | 
| MSC:
             | 
90C05 | 
| MSC:
             | 
90C70 | 
| idZBL:
             | 
Zbl 1249.90350 | 
| idMR:
             | 
MR2275346 | 
| . | 
| Date available:
             | 
2009-09-24T20:17:24Z | 
| Last updated:
             | 
2015-03-29 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/135726 | 
| . | 
| Reference:
             | 
[1] Inuiguchi M.: Necessity optimization in linear programming problems with interactive fuzzy numbers.In: Proc. 7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty (H. Noguchi, H. Ishii and M. Inuiguchi, eds.), Awaji Yumebutai ICC, 2004, pp. 9–14 | 
| Reference:
             | 
[2] Inuiguchi M., Ramík J.: Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem.Fuzzy Sets and Systems 111 (2000), 1, 3–28 Zbl 0938.90074, MR 1748690 | 
| Reference:
             | 
[3] Inuiguchi M., Ramík, J., Tanino T.: Oblique fuzzy vectors and their use in possibilistic linear programming.Fuzzy Sets and Systems 137 (2003), 1, 123–150 Zbl 1026.90104, MR 1977539 | 
| Reference:
             | 
[4] Inuiguchi M., Sakawa M.: A possibilistic linear program is equivalent to a stochastic linear program in a special case.Fuzzy Sets and Systems 76 (1995), 309–318 Zbl 0856.90131, MR 1365398 | 
| Reference:
             | 
[5] Inuiguchi M., Tanino T.: Portfolio selection under independent possibilistic information.Fuzzy Sets and Systems 115 (2000), 1, 83–92 Zbl 0982.91028, MR 1776308 | 
| Reference:
             | 
[6] Inuiguchi M., Tanino T.: Possibilistic linear programming with fuzzy if-then rule coefficients.Fuzzy Optimization and Decision Making 1 (2002), 1, 65–91 Zbl 1056.90142, MR 1922355, 10.1023/A:1013727809532 | 
| Reference:
             | 
[7] Inuiguchi M., Tanino T.: Fuzzy linear programming with interactive uncertain parameters.Reliable Computing 10 (2004), 5, 357–367 Zbl 1048.65062, MR 2063296, 10.1023/B:REOM.0000032118.34323.f2 | 
| Reference:
             | 
[8] Lasdon L. S.: Optimization Theory for Large Systems.Macmillan, New York 1970 Zbl 0991.90001, MR 0337317 | 
| Reference:
             | 
[9] Rommelfanger H., Kresztfalvi T.: Multicriteria fuzzy optimization based on Yager’s parameterized t-norm.Found. Computing and Decision Sciences 16 (1991), 2, 99–110 MR 1186955 | 
| Reference:
             | 
[10] Zimmermann H.-J.: Applications of fuzzy set theory to mathematical programming.Inform. Sci. 36 (1985), 1–2, 29–58 Zbl 0578.90095, MR 0813764, 10.1016/0020-0255(85)90025-8 | 
| . |