| Title:
|
Properties of fuzzy relations powers (English) |
| Author:
|
Drewniak, Józef |
| Author:
|
Pȩkala, Barbara |
| Language:
|
English |
| Journal:
|
Kybernetika |
| ISSN:
|
0023-5954 |
| Volume:
|
43 |
| Issue:
|
2 |
| Year:
|
2007 |
| Pages:
|
133-142 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Properties of $\sup \nolimits $-$\ast $ compositions of fuzzy relations were first examined in Goguen [8] and next discussed by many authors. Power sequence of fuzzy relations was mainly considered in the case of matrices of fuzzy relation on a finite set. We consider $\sup \nolimits $-$\ast $ powers of fuzzy relations under diverse assumptions about $\ast $ operation. At first, we remind fundamental properties of $\sup \nolimits $-$\ast $ composition. Then, we introduce some manipulations on relation powers. Next, the closure and interior of fuzzy relations are examined. Finally, particular properties of fuzzy relations on a finite set are presented. (English) |
| Keyword:
|
fuzzy relation |
| Keyword:
|
binary operation |
| Keyword:
|
relation composition |
| Keyword:
|
$\sup \nolimits $-$\ast $ composition |
| Keyword:
|
relation powers |
| Keyword:
|
relation closure |
| Keyword:
|
relation interior |
| MSC:
|
03E72 |
| MSC:
|
15A33 |
| MSC:
|
15A99 |
| MSC:
|
16Y60 |
| idZBL:
|
Zbl 1135.03022 |
| idMR:
|
MR2343391 |
| . |
| Date available:
|
2009-09-24T20:22:22Z |
| Last updated:
|
2012-06-06 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135762 |
| . |
| Reference:
|
[1] Birkhoff G.: Lattice Theory.(Colloq. Publ. 25.) American Mathematical Society, Providence, RI 1967 Zbl 0537.06001, MR 0227053 |
| Reference:
|
[2] Cechlárová K.: Powers of matrices over distributive lattices – a review.Fuzzy Sets and Systems 138 (2003), 3, 627–641 Zbl 1075.05537, MR 1998683 |
| Reference:
|
[3] Drewniak J.: Classes of fuzzy relations.In: Application of Logical an Algebraic Aspects of Fuzzy Relations (E. P. Klement and L. I. Valverde eds.), Johannes Kepler Universität Linz, Linz 1990, pp. 36–38 |
| Reference:
|
[4] Drewniak J., Kula K.: Generalized compositions of fuzzy relations.Internat. J. Uncertainty, Fuzziness Knowledge-Based Systems 10 (2002), 149–163 Zbl 1053.03511, MR 1962675 |
| Reference:
|
[5] Fan Z. T.: A note on power sequence of a fuzzy matrix.Fuzzy Sets and Systems 102 (1999), 281–286 MR 1674967 |
| Reference:
|
[6] Fan Z. T.: On the convergence of a fuzzy matrix in the sense of triangular norms.Fuzzy Sets and Systems 109 (2000), 409–417 Zbl 0980.15013, MR 1746994 |
| Reference:
|
[7] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002 |
| Reference:
|
[8] Goguen J. A.: L-fuzzy sets.J. Math. Anal. Appl. 18 (1967), 145–174 Zbl 0145.24404, MR 0224391 |
| Reference:
|
[9] Kaufmann A.: Introduction to the Theory of Fuzzy Subsets.Academic Press, New York 1975 Zbl 0332.02063, MR 0485402 |
| Reference:
|
[10] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096 |
| Reference:
|
[11] Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic.Theory and Applications. Prentice Hall, New Jersey 1995 Zbl 0915.03001, MR 1329731 |
| Reference:
|
[12] Li J. C., Zhang W. X.: On convergence of the min-max compositions of fuzzy matrices.Southeast Asian Bull. Math. 24 (2000), 3, 389–393 Zbl 0982.15018, MR 1811398 |
| Reference:
|
[13] Li J. X.: An upper bound of indices of finite fuzzy relations.Fuzzy Sets and Systems 49 (1992), 317–321 MR 1185382 |
| Reference:
|
[14] Nguyen H. T., Walker E. A.: A First Course in Fuzzy Logic.Chapmann & Hall, London 2000 Zbl 1083.03031, MR 1700266 |
| Reference:
|
[15] Portilla M. I., Burillo, P., Eraso M. L.: Properties of the fuzzy composition based on aggregation operators.Fuzzy Sets and Systems 110 (2000), 2, 217–226 Zbl 0941.03060, MR 1747743 |
| Reference:
|
[16] Thomason M. G.: Convergence of powers of a fuzzy matrix.J. Math. Anal. Appl. 57 (1977), 476–480 Zbl 0345.15007, MR 0427342 |
| Reference:
|
[17] Szász G.: Introduction to Lattice Theory.Akad. Kiadó, Budapest 1963 Zbl 0126.03703, MR 0110652 |
| Reference:
|
[18] Tan Y. J.: On the transitive matrices over distributive lattices.Linear Algebra Appl. 400 (2005), 169–191 Zbl 1073.15015, MR 2131923 |
| Reference:
|
[19] Zadeh L. A.: Fuzzy sets.Inform. and Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427 |
| Reference:
|
[20] Zadeh L. A.: Similarity relations and fuzzy orderings.Inform. Sci. 3 (1971), 177–200 Zbl 0218.02058, MR 0297650 |
| . |