[1] Blomvall J., Shapiro A.: 
Solving multistage asset investment problems by the sample average approximation method. Math. Program. 108 (2006), 571–595 
MR 2238715 | 
Zbl 1130.90373[2] Chiralaksanakul A.: Monte Carlo Methods for Multi-stage Stochastic Programs. PhD. Thesis, University of Texas at Austin, 2003
[3] Chiralaksanakul A., Morton D.: Assessing policy quality in multi-stage stochastic programming. Stochastic Programming E-Print Series, 2004
[4] Fourer R., Gay D. M., Kernighan B.W.: AMPL: A Modeling Language for Mathematical Programming. Second edition. Thomson, Canada 2002
[5] Frauendorfer K.: 
Barycentric scenario trees in convex multistage stochastic programming. Math. Programming 75 (1996), 277–293 
MR 1426642 | 
Zbl 0874.90144[6] Glasserman P.: 
Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York 2004 
MR 1999614 | 
Zbl 1038.91045[7] Heitsch H., Römisch W.: 
Scenario tree modelling for multistage stochastic programs. Math. Programming. To appear 
MR 2470797[8] Hilli P., Koivu M., Pennanen, T., Ranne A.: 
A stochastic programming model for asset liability management of a Finnish pension company. Ann. Oper. Res. 152 (2007), 115–139 
MR 2303128 | 
Zbl 1132.91493[10] Kuhn D.: 
Generalized Bounds for Convex Multistage Stochastic Programs. Springer-Verlag, Berlin 2005 
MR 2103400 | 
Zbl 1103.90069[11] Niederreiter H.: 
Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia 1992 
MR 1172997 | 
Zbl 0761.65002[12] Niederreiter H., Talay D.: 
Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer-Verlag, Berlin 2006 
MR 2208697 | 
Zbl 1084.65005[13] Olsen P.: 
Discretizations of multistage stochastic programming problems. Math. Programming Stud. 6 (1976), 111–124 
MR 0462589 | 
Zbl 0374.90053[14] Pennanen T.: 
Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30 (2005), 245–256 
MR 2125146 | 
Zbl 1165.90014[15] Pennanen T.: 
Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Math. Programming, Series B. To appear 
MR 2421289 | 
Zbl 1165.90014[16] Pennanen T., Koivu M.: Integration quadratures in discretization of stochastic programs. SPEPS E-Print Series, 2002
[17] Pflug G.: 
Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Programming 89 (2001), 251–271 
MR 1816503[18] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.: 
Numerical Recipes in C. Cambridge University Press, Cambridge 1992 
MR 1201159 | 
Zbl 1078.65500[19] Rockafellar R. T., Wets R. J.-B.: 
Continuous versus measurable recourse in $N$-stage stochastic programming. J. Math. Anal. Appl. 48 (1974), 836–859 
MR 0406509 | 
Zbl 0309.90039[20] Rockafellar R. T., Wets R. J.-B.: 
Nonanticipativity and $L^1$-martingales in stochastic optimization problems. Math. Programming Stud. (1976), 170–187 
MR 0462590[21] Shapiro A.: 
Inference of statistical bounds for multistage stochastic programming problems. Math. Methods Oper. Res. 58 (2003), 57–68 
MR 2002322 | 
Zbl 1116.90384[22] Shapiro A.: 
On complexity of multistage stochastic programs. Oper. Res. Lett. 34 (2006), 1–8 
MR 2186066 | 
Zbl 1080.90056[23] Sloan I. H., Joe S.: 
Lattice Methods for Multiple Integration. The Clarendon Press Oxford University Press, New York 1994 
MR 1442955 | 
Zbl 0855.65013[24] Sobol’ I. M.: 
The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Computational Math. And Math. Phys. (1967), 86–112 
MR 0219238 | 
Zbl 0185.41103