[1] ALFSEN E.-SCHULTZ F.: 
On the geometry of noncommutative spectral theory. Bull. Amer. Math. Soc. 81 (1975), 893-895. 
MR 0377549 | 
Zbl 0337.46014 
[2] BENNETT M. K.-FOULIS D. J.: 
Interval and scale effect algebras. Adv. in Appl. Math. 19 (1997), 200-215. 
MR 1459498 | 
Zbl 0883.03048 
[4] FOULIS D. J.: 
MV and Heyting effect algebras. Found. Phys. 30 (2000), 1687-1706. 
MR 1810197 
[5] FOULIS D. J.: 
Compressions on partially ordered abelian groups. (Submitted). 
Zbl 1063.47003 
[7] FOULIS D. J.-GREECHIE R. J.-BENNETT M. K.: 
The transition to unigroups. Internat. J. Theoret. Phys. 37 (1998), 45-64. 
MR 1637148 | 
Zbl 0904.06013 
[8] GREECHIE R. J.-FOULIS D. J.-PULMANNOVÁ S.: 
The center of an effect algebra. Order 12 (1995), 91-106. 
MR 1336539 | 
Zbl 0846.03031 
[9] GOODEARL K. R.: 
Partially Ordered Abelian Groups with Interpolation. Math. Surveys Monographs 20, Amer. Math. Soc, Providence, RI, 1986. 
MR 0845783 | 
Zbl 0589.06008 
[10] GUDDER S. P.: 
Examples, problems, and results in effect algebras. Internat. J. Theoret. Phys. 35 (1996), 2365-2376. 
MR 1423412 | 
Zbl 0868.03028 
[11] GUDDER S. P.: 
Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23-30. 
MR 1655076 | 
Zbl 0939.03073 
[12] GUDDER S. P.-PULMANNOVÁ S.-BUGAJSKI S.-BELTRAMETTI E. G.: 
Convex and linear effect algebras. Rep. Math. Phys. 44 (1999), 359-379. 
MR 1737384 | 
Zbl 0956.46002 
[13] HANDELMAN, D-HIGGS D.-LAWRENCE J.: 
Directed abelian groups, countably continuous rings, and Rickart $C^\ast$ -algebras. J. London Math. Soc 21 (1980), 193-202. 
MR 0575375 
[14] JENČA G.: 
Blocks of homogeneous effect algebras. Bull. Austral. Math. Soc. 64 (2001), 81-98. 
MR 1848081 | 
Zbl 0985.03063 
[15] KADISON R. V.: 
Order properties of bounded self-adjoint operators. Proc. Amer. Math. Soc 2 (1951), 505-510. 
MR 0042064 | 
Zbl 0043.11501 
[16] PTÁK P.-PULMANNOVÁ S.: 
Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht-Boston-London, 1991. 
MR 1176314 | 
Zbl 0743.03039 
[17] PULMANNOVÁ S.: 
Effect algebras with the Riesz decomposition property and $AF$ $C^\ast$-algebras. Found. Phys. 29 (1999), 1389-1401. 
MR 1739751 
[18] RIESZ F.-SZ.-NAGY B.: 
Functional Analysis. Frederick Ungar Publishing Co., New York, 1955. 
MR 0071727