Previous |  Up |  Next

Article

Title: Metrizability of connections on two-manifolds (English)
Author: Vanžurová, Alena
Author: Žáčková, Petra
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 48
Issue: 1
Year: 2009
Pages: 157-170
Summary lang: English
.
Category: math
.
Summary: We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations. (English)
Keyword: Manifold
Keyword: linear connection
Keyword: metric connection
Keyword: pseudo-Riemannian geometry
MSC: 53B05
MSC: 53B20
MSC: 53C05
idZBL: Zbl 1195.53023
idMR: MR2641956
.
Date available: 2010-02-11T14:00:46Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/137517
.
Reference: [1] Boothby, W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry.Academic Press, Amsterdam–London–New York–Oxford–Paris–Tokyo, 2003 (revised second editon). MR 0861409
Reference: [2] Cocos, M.: A note on symmetric connections.J. Geom. Phys. 56 (2006), 337–343. Zbl 1091.53008, MR 2171888
Reference: [3] do Carmo, M. P.: Riemannian Geometry.. Birkhäuser, Boston–Basel–Berlin, 1992. Zbl 0752.53001, MR 1138207
Reference: [4] Cheng, K. S, Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds.Chinese J. Phys. 16 (1978), 228–232.
Reference: [5] Douglas, J.: Solution of the inverse problem of the calculus of variations.Trans. AMS 50 (1941), 71–128. Zbl 0025.18102, MR 0004740
Reference: [6] Dodson, C. T. J., Poston, T.: Tensor Geometry. The Geometric Viewpoint and its Uses.Spriger, New York–Berlin–Heidelberg, 1991 (second editon). Zbl 0732.53002, MR 1223091
Reference: [7] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization.Proc. London Math. Soc. 8 (1922), 19–23.
Reference: [8] Jost, J.: Riemannian Geometry and Geometric Analysis.Springer, Berlin–Heidelberg–New York, 2005. Zbl 1083.53001, MR 2165400
Reference: [9] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II.Wiley, New York–Chichester–Brisbane–Toronto–Singapore, 1991.
Reference: [10] Kolář, I., Slovák, J., Michor, P. W.: Natural Operations in Differential Geometry.Springer, Berlin–Heidelberg–New York, 1993. MR 1202431
Reference: [11] Kowalski, O.: On regular curvature structures.Math. Z. 125 (1972), 129–138. Zbl 0234.53024, MR 0295250
Reference: [12] Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principle.Wiley, New York–London–Sydney, 1975. MR 0474046
Reference: [13] Mikeš, J., Kiosak, V., Vanžurová, A.: Geodesic Mappings of Manifolds with Affine Connection.Palacký Univ. Publ., Olomouc, 2008. Zbl 1176.53004, MR 2488821
Reference: [14] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Geometry of Affine Immersions.Cambridge Univ. Press, Cambridge, 1994. MR 1311248
Reference: [15] Petrov, A. Z.: Einstein Spaces.Moscow, 1961 (in Russian). MR 0141492
Reference: [16] Schmidt, B. G.: Conditions on a connection to be a metric connection.Commun. Math. Phys. 29 (1973), 55–59. MR 0322726
Reference: [17] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces.Moscow, 1979 (in Russian). Zbl 0637.53020, MR 0552022
Reference: [18] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds.Chinese J. Phys. 19, 6 (1991), 529–532.
Reference: [19] Vanžurová, A.: Linear connections on two-manifolds and SODEs.Proc. Conf. Aplimat 2007, Bratislava, Slov. Rep., Part II, 2007, 325–332.
Reference: [20] Vanžurová, A.: Metrization problem for linear connections and holonomy algebras.Archivum Mathematicum (Brno) 44 (2008), 339–348. MR 2501581
Reference: [21] Vanžurová, A.: Metrization of linear connections, holonomy groups and holonomy algebras.Acta Physica Debrecina 42 (2008), 39–48.
Reference: [22] Vanžurová, A., Žáčková, P.: Metrization of linear connections.Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163.
Reference: [23] Wolf, J. A.: Spaces of Constant Curvature.Berkley, California, 1972. MR 0343213
.

Files

Files Size Format View
ActaOlom_48-2009-1_14.pdf 313.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo