Full entry |
PDF
(1.0 MB)
Feedback

decentralized $H_{\infty}$ feedback control system; quantizer; quantization; matrix inequality; output feedback

References:

[1] R. W. Brockett and D. Liberzon: **Quantized feedback stabilization of linear systems**. IEEE Trans. Automat. Control 45 (2000), 1279–1289. MR 1779982

[2] L. G. Bushnell: **Special section on networks & control**. IEEE Control Systems Magazine 21 (2001), 22–99.

[3] D. F. Delchamps: **Stabilizing a linear system with quantized state feedback**. IEEE Trans. Automat. Control 35 (1990), 916–924. MR 1064642 | Zbl 0719.93067

[4] H. Ishii and B. Francis: **Limited Data Rate in Control Systems with Networks**. Springer-Verlag, Berlin 2002. MR 1898626

[5] T. Iwasaki, R. E. Skelton, and K. M. Grigoriadis: **A Unified Algebraic Approach to Linear Control Design**. Taylor & Francis, London 1998. MR 1484416

[6] D. Liberzon: **Nonlinear stabilization by hybrid quantized feedback**. In: Proc. 3rd Internat. Workshop on Hybrid Systems: Computation and Control, Pittsburgh 2000, pp. 243–257. Zbl 0952.93109

[7] D. Liberzon: **Hybrid feedback stabilization of systems with quantized signals**. Automatica 39 (2003), 1543–1554. MR 2143462 | Zbl 1030.93042

[8] Y. Matsumoto, G. Zhai, and Y. Mi: **Stabilization of discrete-time LTI systems by hybrid quantized output feedback**. In: Preprints of the 46th Japan Joint Automatic Control Conference, Okayama 2003, pp. 799–802.

[9] H. Zhai, Y. Matsumoto, X. Chen, and Y. Mi: **Hybrid stabilization of linear time-invariant systems with two quantizers**. In: Proc. 2004 IEEE Internat. Symposium on Intelligent Control, Taipei 2004, pp. 305–309.

[10] G. Zhai, Y. Mi, J. Imae, and T. Kobayashi: **Design of ${{H}}_{\infty }$ feedback control systems with quantized signals**. In: Preprints of the 16th IFAC World Congress, Paper code: Fr-M17-TO/1, Prague 2005.