[1] V. Ayala and L. San Martin: 
Controllability properties of a class of control systems on Lie groups. Lectures Notes in Control and Inform. Sci. 1 (2001), 258, 83–92. 
MR 1806128[2] V. Ayala and J. Tirao: 
Linear control systems on Lie groups and controllability. Amer. Math. Soc. Symposia in Pure Mathematics 64 (1999), 47–64. 
MR 1654529[3] Domenico D’Alessandro: 
Small time controllability of systems on compact Lie groups and spin angular momentum. J. Math. Phys. 42 (2001) 9, 4488–4496. 
MR 1852638[4] S. Helgason: 
Differential Geometry, Lie groups and Symmetric Spaces. Academic Press, New York 1978. 
MR 0514561 | 
Zbl 0993.53002[5] V. Jurdjevic and H. J. Sussmann: 
Controllability of nonlinear systems. J. Differential Equations 12 (1972), 95–116. 
MR 0338882[6] V. Jurdjevic and H. J. Sussmann: 
Control systems on Lie groups. J. Differential Equations 12 (1972), 313–329. 
MR 0331185[7] H. Kunita: 
Support of diffusion processes and controllability problems. In: Proc. Internat. Symposium on Stochastic Differential Equations (K. Ito, ed.), Wiley, New York 1978, pp. 163–185. 
MR 0536011[8] Y. Sachkov: Control Theory on Lie Groups. Lecture Notes SISSA, 2006.
[9] L. San Martin: Algebras de Lie. Editorial UNICAMP, Campinas, SP, 1999.
[10] F. Silva Leite: 
Uniform controllable sets of left-invariant vector fields on compact Lie groups. Systems Control Lett. 7 (1986), 213–216. 
MR 0847893 | 
Zbl 0598.93005[11] F. Silva Leite: 
Uniform controllable sets of left-invariant vector fields on non compact Lie groups. Systems Control Letters 6 (1986), 329–335. 
MR 0821928[12] F. W. Warner: 
Foundations of Differential Manifolds and Lie Groups. Scott Foreman, Glenview 1971. 
MR 0295244