| Title:
             | 
Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion (English) | 
| Author:
             | 
González-Hernández, Juan | 
| Author:
             | 
López-Martínez, Raquiel R. | 
| Author:
             | 
Minjárez-Sosa, J. Adolfo | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 | 
| Volume:
             | 
45 | 
| Issue:
             | 
5 | 
| Year:
             | 
2009 | 
| Pages:
             | 
737-754 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The paper deals with a class of discrete-time stochastic control processes under a discounted optimality criterion with random discount rate, and possibly unbounded costs. The state process $\left\{ x_{t}\right\} $ and the discount process $\left\{ \alpha _{t}\right\} $ evolve according to the coupled difference equations $x_{t+1}=F(x_{t},\alpha _{t},a_{t},\xi _{t}),$ $ \alpha _{t+1}=G(\alpha _{t},\eta _{t})$ where the state and discount disturbance processes $\{\xi _{t}\}$ and $\{\eta _{t}\}$ are sequences of i.i.d. random variables with densities $\rho ^{\xi }$ and $\rho ^{\eta }$ respectively. The main objective is to introduce approximation algorithms of the optimal cost function that lead up to construction of optimal or nearly optimal policies in the cases when the densities $\rho ^{\xi }$ and $\rho ^{\eta }$ are either known or unknown. In the latter case, we combine suitable estimation methods with control procedures to construct an asymptotically discounted optimal policy. (English) | 
| Keyword:
             | 
discounted cost | 
| Keyword:
             | 
random rate | 
| Keyword:
             | 
stochastic systems | 
| Keyword:
             | 
approximation algorithms | 
| Keyword:
             | 
density estimation | 
| MSC:
             | 
90C40 | 
| MSC:
             | 
93C55 | 
| MSC:
             | 
93E10 | 
| MSC:
             | 
93E20 | 
| idZBL:
             | 
Zbl 1190.93105 | 
| idMR:
             | 
MR2599109 | 
| . | 
| Date available:
             | 
2010-06-02T19:11:43Z | 
| Last updated:
             | 
2012-06-06 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/140040 | 
| . | 
| Reference:
             | 
[1] H. Berument, Z. Kilinc, and U. Ozlale: The effects of different inflation risk premiums on interest rate spreads.Physica A 333 (2004), 317–324. MR 2100223 | 
| Reference:
             | 
[2] L. Devroye and L. Györfi: Nonparametric Density Estimation the $L_{1}$ View.Wiley, New York 1985. MR 0780746 | 
| Reference:
             | 
[3] E. B. Dynkin and A. A. Yushkevich: Controlled Markov Processes.Springer–Verlag, New York 1979. MR 0554083 | 
| Reference:
             | 
[4] 
		: .A. Gil and A. Luis: Modelling the U. S. interest rate in terms of I(d) statistical model. Quart. Rev. Economics and Finance 44 (2004), 475–486. | 
| Reference:
             | 
[5] R. Hasminskii and I. Ibragimov: On density estimation in the view of Kolmogorov’s ideas in approximation theory.Ann. Statist. 18 (1990), 999–1010. MR 1062695 | 
| Reference:
             | 
[6] J. González-Hernández, R. R. López-Martínez, and R. Pérez-Hernández: Markov control processes with randomized discounted cost in Borel space.Math. Meth. Oper. Res. 65 (2007), 27–44. | 
| Reference:
             | 
[7] S. Haberman and J. Sung: Optimal pension funding dynamics over infinite control horizon when stochastic rates of return are stationary.Insurance Math. Econom. 36 (2005), 103–116. MR 2122668 | 
| Reference:
             | 
[8] O. Hernández-Lerma: Adaptive Markov Control Processes.Springer–Verlag, New York 1989. MR 0995463 | 
| Reference:
             | 
[9] O. Hernández-Lerma and J. B. Lasserre: Discrete-Time Markov Control Processes: Basic Optimality Criteria.Springer–Verlag, New York 1996. MR 1363487 | 
| Reference:
             | 
[10] O. Hernández-Lerma and J. B. Lasserre: Further Topics on Discrete-Time Markov Control Processes.Springer–Verlag, New York 1999. MR 1697198 | 
| Reference:
             | 
[11] O. Hernández-Lerma and W. Runggaldier: Monotone approximations for convex stochastic control problems.J. Math. Syst., Estimation, and Control 4 (1994), 99–140. MR 1298550 | 
| Reference:
             | 
[12] P. Lee and D. B. Rosenfield: When to refinance a mortgage: a dynamic programming approach.European J. Oper. Res. 166 (2005), 266–277. | 
| Reference:
             | 
[13] R. G. Newell and W. A. Pizer: Discounting the distant future: how much do uncertain rates increase valuation? J.Environmental Economic and Management 46 (2003), 52–71. | 
| Reference:
             | 
[14] B. Sack and V. Wieland: Interest-rate smooothing and optimal monetary policy: A review of recent empirical evidence.J. Econom. Business 52 (2000), 205–228. | 
| Reference:
             | 
[15] M. Schäl: Conditions for optimality and for the limit of n-stage optimal policies to be optimal.Z. Wahrsch. Verw. Gerb. 32 (1975), 179–196. MR 0378841 | 
| Reference:
             | 
[16] M. Schäl: Estimation and control in discounted stochastic dynamic programming.Stochastics 20 (1987), 51–71. MR 0875814 | 
| Reference:
             | 
[17] N. L. Stockey and R. E. Lucas, Jr.: Recursive Methods in Economic Dynamics.Harvard University Press, Cambridge, MA 1989. MR 1105087 | 
| . |