Previous |  Up |  Next

Article

Keywords:
log-linear models; marginal problem; null Markov chains
Summary:
The BIPF algorithm is a Markovian algorithm with the purpose of simulating certain probability distributions supported by contingency tables belonging to hierarchical log-linear models. The updating steps of the algorithm depend only on the required expected marginal tables over the maximal terms of the hierarchical model. Usually these tables are marginals of a positive joint table, in which case it is well known that the algorithm is a blocking Gibbs Sampler. But the algorithm makes sense even when these marginals do not come from a joint table. In this case the target distribution of the algorithm is necessarily improper. In this paper we investigate the simplest non trivial case, i. e. the $2\times2\times2$ hierarchical interaction. Our result is that the algorithm is asymptotically attracted by a limit cycle in law.
References:
[1] D. Z. Albert: Quantum Mechanics and Experience. Harvard College, Cambridge 1992. MR 1221080
[2] C. Asci, G. Letac, and M. Piccioni: Beta-hypergeometric distributions and random continued fractions. Statist. Probab. Lett. 78 (2008), 1711–1721. MR 2453912
[3] C. Asci and M. Piccioni: The IPF algorithm when the marginal problem is unsolvable: the simplest case. Kybernetika 39 (2003), 731–737. MR 2035647
[4] C. Asci and M. Piccioni: Functionally compatible local characteristics for the local specification of priors in graphical models. Scand. J. Statist. 34 (2007), 829–840. MR 2396941
[5] I. Csiszár: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146–158. MR 0365798
[6] A. P. Dawid and S. L. Lauritzen: Hyper-Markov laws in the statistical analysis of decomposable graphical models. Ann. Statist. 21 (1993), 1272–1317. MR 1241267
[7] D. A. van Dyk and X. Meng: The art of data augmentation. With discussions, and a rejoinder by the authors. J. Comput. Graph. Statist. 10 (2001), 1–111. MR 1936358
[8] A. Einstein, B. Podolsky, and N. Rosen: Can the quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 (1935), 777–780.
[9] A. Gelman, J. B. Carlin, D. B. Rubin, and H. S. Stern: Bayesian Data Analysis. Chapman and Hall, London 1995. MR 1385925
[10] J. P. Hobert and G. Casella: Functional compatibility, Markov chains, and Gibbs sampling with improper posteriors. J. Comput. Graph. Statist. 7 (1998), 42–60. MR 1628268
[11] S. L. Lauritzen: Graphical Models. Clarendon Press, Oxford 1996. MR 1419991 | Zbl 1055.62126
[12] S. L. Lauritzen and T. S. Richardson: Chain graph models and their causal interpretations (with discussion). J. Roy. Statist. Soc. Ser. B 64 (2002), 321–348. MR 1924296
[13] S. P. Meyn and R. L. Tweedie: Markov Chains and Stochastic Stability. Springer-Verlag, London 1993. MR 1287609
[14] M. Piccioni: Independence structure of natural conjugate densities to exponential families and the Gibbs’ sampler. Scand. J. Statist. 27 (2000), 111–127. MR 1774047 | Zbl 0938.62025
[15] E. D. Rainville: Special Functions. MacMillan, New York 1960. MR 0107725 | Zbl 0231.33001
[16] J. L. Schafer: Analysis of Incomplete Multivariate Data. Chapman and Hall, London 1997. MR 1692799 | Zbl 0997.62510
[17] R. L. Tweedie: R-theory for Markov chains on a general state space I, II. Ann. Probab. 2 (1974), 840–878. MR 0368151
[18] D. Williams: Weighing the Odds. Cambridge University Press, Cambridge 2001. MR 1854128 | Zbl 0984.62001
Partner of
EuDML logo