[2] H. Beirão da Veiga: 
A new regularity class for the Navier-Stokes equations in $\Bbb R^n$. Chin. Ann. Math., Ser. B 16 (1995), 407-412. 
MR 1380578 
[3] Dongho Chae, Hi-Jun Choe: 
Regularity of solutions to the Navier-Stokes equation. Electron. J. Differ. Equ. No. 05 (1999). 
MR 1673067 
[5] Fabes, E. B., Jones, B. F., Rivière, N. M.: 
The initial value problem for the Navier-Stokes equations with data in $L^p$. Arch. Ration. Mech. Anal. 45 (1972), 222-240. 
DOI 10.1007/BF00281533 | 
MR 0316915 
[6] He, C.: 
Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electron. J. Differ. Equ. No. 29 (2002). 
MR 1907705 | 
Zbl 0993.35072 
[8] Iskauriaza, L., Serëgin, G. A., Shverak, V.: 
$L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness. Usp. Mat. Nauk 58 (2003), 3-44 Russian. 
MR 1992563 
[12] Serrin, J.: 
The initial value problem for the Navier-Stokes equations. Nonlinear Probl., Proc. Sympos. Madison 1962 R. Langer Univ. Wisconsin Press Madison (1963), 69-98. 
MR 0150444 | 
Zbl 0115.08502 
[14] Zhou, Y.: 
A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9 (2002), 563-578. 
MR 2006605 | 
Zbl 1166.35359