Previous |  Up |  Next

Article

Keywords:
Caginalp phase field system; singular potential; dynamic boundary conditions; global existence; global attractor; Łojasiewicz-Simon inequality; convergence to a steady state
Summary:
This article is devoted to the study of the Caginalp phase field system with dynamic boundary conditions and singular potentials. We first show that, for initial data in $H^2$, the solutions are strictly separated from the singularities of the potential. This turns out to be our main argument in the proof of the existence and uniqueness of solutions. We then prove the existence of global attractors. In the last part of the article, we adapt well-known results concerning the Łojasiewicz inequality in order to prove the convergence of solutions to steady states.
References:
[1] Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67 (2007), 3176-3193. DOI 10.1016/j.na.2006.10.002 | MR 2347608 | Zbl 1121.35018
[2] Aizicovici, S., Feireisl, E.: Long-time stabilization of solutions to a phase-field model with memory. J. Evol. Equ. 1 (2001), 69-84. DOI 10.1007/PL00001365 | MR 1838321 | Zbl 0973.35037
[3] Aizicovici, S., Feireisl, E., Issard-Roch, F.: Long-time convergence of solutions to a phase-field system. Math. Methods Appl. Sci. 24 (2001), 277-287. DOI 10.1002/mma.215 | MR 1818896 | Zbl 0984.35026
[4] Bates, P. W., Zheng, S.: Inertial manifolds and inertial sets for phase-field equations. J. Dyn. Diff. Equations 4 (1992), 375-398. DOI 10.1007/BF01049391
[5] Brochet, D., Chen, X., Hilhorst, D.: Finite dimensional exponential attractors for the phase-field model. Appl. Anal. 49 (1993), 197-212. DOI 10.1080/00036819108840173 | MR 1289743
[6] Brokate, M., Sprekels, J.: Hysteresis and phase transitions. Springer New York (1996). MR 1411908 | Zbl 0951.74002
[7] Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92 (1986), 205-245. DOI 10.1007/BF00254827 | MR 0816623 | Zbl 0608.35080
[8] Cherfils, L., Miranville, A.: Some results on the asymptotic behavior of the Caginalp system with singular potentials. Adv. Math. Sci. Appl. 17 (2007), 107-129. MR 2337372 | Zbl 1145.35042
[9] Chill, R., Fašangová, E., Prüss, J.: Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions. Math. Nachr. 279 (2006), 1448-1462. DOI 10.1002/mana.200410431 | MR 2269249 | Zbl 1107.35058
[10] Fischer, H. P., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition. Phys. Rev. Letters 79 (1997), 893-896. DOI 10.1103/PhysRevLett.79.893
[11] Fischer, H. P., Maass, P., Dieterich, W.: Diverging time and length scales of spinodal decomposition modes in thin flows. Europhys. Letters 62 (1998), 49-54. DOI 10.1209/epl/i1998-00550-y
[12] Gal, C. G.: A Cahn-Hilliard model in bounded domains with permeable walls. Math. Methods Appl. Sci. 29 (2006), 2009-2036. DOI 10.1002/mma.757 | MR 2268279 | Zbl 1113.35031
[13] Gal, C. G., Grasselli, M.: The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 22 (2008), 1009-1040. DOI 10.3934/dcds.2008.22.1009 | MR 2434980 | Zbl 1160.35353
[14] Gatti, S., Miranville, A.: Asymptotic behavior of a phase-field system with dynamic boundary conditions. Differential Equations: Inverse and Direct Problems (Proceedings of the workshop "Evolution Equations: Inverse and Direct Problems", Cortona, June 21-25, 2004). A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251 A. Favini and A. Lorenzi CRC Press Boca Raton (2006), 149-170. MR 2275977 | Zbl 1123.35310
[15] Giorgi, C., Grasselli, M., Pata, V.: Uniform attractors for a phase-field model with memory and quadratic nonlinearity. Indiana Univ. Math. J. 48 (1999), 1395-1445. DOI 10.1512/iumj.1999.48.1793 | MR 1757078 | Zbl 0940.35037
[16] Grasselli, M., Miranville, A., Pata, V., Zelik, S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math. Nachr. 280 (2007), 1475-1509. DOI 10.1002/mana.200510560 | MR 2354975 | Zbl 1133.35017
[17] Grasselli, M., Petzeltová, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential. Z. Anal. Anwend. 25 (2006), 51-72. DOI 10.4171/ZAA/1277 | MR 2216881 | Zbl 1128.35021
[18] Grasselli, M., Petzeltová, H., Schimperna, G.: Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Commun. Pure Appl. Anal. 5 (2006), 827-838. DOI 10.3934/cpaa.2006.5.827 | MR 2246010 | Zbl 1134.35017
[19] Grasselli, M., Petzeltová, H., Schimperna, G.: A nonlocal phase-field system with inertial term. Q. Appl. Math. 65 (2007), 451-46. DOI 10.1090/S0033-569X-07-01070-9 | MR 2354882 | Zbl 1140.35352
[20] Jendoubi, M. A.: A simple unified approach to some convergence theorems of L. Simon. J. Funct. Anal. 153 (1998), 187-202. DOI 10.1006/jfan.1997.3174 | MR 1609269 | Zbl 0895.35012
[21] Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dieterich, W.: Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions. Comput. Phys. Comm. 133 (2001), 139-157. DOI 10.1016/S0010-4655(00)00159-4 | MR 1809807 | Zbl 0985.65114
[22] Łojasiewicz, S.: Ensembles semi-analytiques. IHES Bures-sur-Yvette (1965), French.
[23] Miranville, A., Rougirel, A.: Local and asymptotic analysis of the flow generated by the Cahn-Hilliard-Gurtin equations. Z. Angew. Math. Phys. 57 (2006), 244-268. DOI 10.1007/s00033-005-0017-6 | MR 2214071 | Zbl 1094.35102
[24] Miranville, A., Zelik, S.: Robust exponential attractors for singularly perturbed phase-field type equations. Electron. J. Differ. Equ. (2002), 1-28. MR 1911930 | Zbl 1004.35024
[25] Miranville, A., Zelik, S.: Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions. Math. Methods Appl. Sci. 28 (2005), 709-735. DOI 10.1002/mma.590 | MR 2125817 | Zbl 1068.35020
[26] Prüss, J., Racke, R., Zheng, S.: Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions. Ann. Mat. Pura Appl. 185 (2006), 627-648. DOI 10.1007/s10231-005-0175-3 | MR 2230586 | Zbl 1232.35081
[27] Prüss, J., Wilke, M.: Maximal $L_p$-regularity and long-time behaviour of the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions. Operator Theory: Advances and Applications, Vol. 168 Birkhäuser Basel (2006), 209-236. MR 2240062 | Zbl 1109.35060
[28] Racke, R., Zheng, S.: The Cahn-Hilliard equation with dynamic boundary conditions. Adv. Diff. Equ. 8 (2003), 83-110. MR 1946559 | Zbl 1035.35050
[29] Rybka, P., Hoffmann, K.-H.: Convergence of solutions to Cahn-Hilliard equation. Commun. Partial Differ. Equations 24 (1999), 1055-1077. DOI 10.1080/03605309908821458 | MR 1680877 | Zbl 0936.35032
[30] Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to gemetric problems. Ann. Math. 118 (1983), 525-571. DOI 10.2307/2006981 | MR 0727703
[31] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. Springer New York (1997). MR 1441312
[32] Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions. J. Differ. Equations 204 (2004), 511-531. DOI 10.1016/j.jde.2004.05.004 | MR 2085545 | Zbl 1068.35018
[33] Zhang, Z.: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions. Commun. Pure Appl. Anal. 4 (2005), 683-693. DOI 10.3934/cpaa.2005.4.683 | MR 2167193 | Zbl 1082.35033
[34] Zhang, Z.: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions. Commun. Pure Appl. Anal. 4 (2005), 683-693. DOI 10.3934/cpaa.2005.4.683 | MR 2167193 | Zbl 1082.35033
Partner of
EuDML logo