[1] Aczél, J.: 
Lectures on Functional Equations and Their Applications. Academic Press, New York (1966). 
MR 0208210[2] Awane, A., Goze, M.: 
Pfaffian Systems, k-symplectic Systems. Kluwer Academic Publischers (Dordrecht-Boston-London) (2000). 
MR 1779116 | 
Zbl 0957.58004[4] Cartan, E.: 
Les systémes différentiels extérieurs et leurs applications géometriques. Act. Scient. et Ind. 994 (1945). 
MR 0016174 | 
Zbl 0063.00734[5] Cartan, E.: 
Sur la structure des groupes infinis de transformations. Ann. Ec. Norm. 3-e serie, t. XXI 153-206 (1904), (also Oeuvres Complètes, Partie II, Vol 2, Gauthier-Villars, Paris 1953) \JFM 35.0176.04. 
MR 1509040[7] Chrastina, J.: Transformations of differential equations. Equadiff 9 CD ROM, Papers, Masaryk university, Brno (1997), 83-92.
[8] Chrastina, J.: 
The formal theory of differential equations. Folia Fac. Scient. Nat. Univ. Masarykianae Brunensis, Mathematica 6 (1998). 
MR 1656843 | 
Zbl 0906.35002[9] Gardner, R. B.: 
The method of equivalence and its applications. CBMS-NSF Regional Conf. in Appl. Math. 58 (1989). 
MR 1062197 | 
Zbl 0694.53027[10] Neuman, F.: 
On transformations of differential equations and systems with deviating argument. Czech. Math. J. 31 (1981), 87-90. 
MR 0604115 | 
Zbl 0463.34051[11] Neuman, F.: 
Simultaneous solutions of a system of Abel equations and differential equations with several delays. Czech. Math. J. 32 (1982), 488-494. 
MR 0669790[12] Neuman, F.: 
Transformations and canonical forms of functional-differential equations. Proc. Roy. Soc. Edinburgh 115 A (1990), 349-357. 
MR 1069527[13] Neuman, F.: 
Global Properties of Linear Ordinary Differential Equations. Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht-Boston-London (1991). 
MR 1192133 | 
Zbl 0784.34009[15] Sharpe, R. V.: 
Differential Geometry. Graduate Texts in Math. 166, Springer Verlag (1997). 
MR 1453120 | 
Zbl 0876.53001[16] Tryhuk, V.: 
The most general transformations of homogeneous linear differential retarded equations of the first order. Arch. Math. (Brno) 16 (1980), 225-230. 
MR 0594470[17] Tryhuk, V.: 
The most general transformation of homogeneous linear differential retarded equations of the $n$-th order. Math. Slovaca 33 (1983), 15-21. 
MR 0689272[19] Tryhuk, V., Dlouhý, O.: 
The moving frames for differential equations. Arch. Math. (Brno), Part I. The change of independent variable 39 (2003), 317-333 Part II. Underdetermined and functional equations 40 (2004), 69-88. 
MR 2054874