Previous |  Up |  Next

Article

Keywords:
ordinary differential equations; mechanical system; potential-energy function; inverse problem of dynamics; orbit; Riemann metric; Stäckel system; Heun equation
Summary:
The paper deals with the problem of finding the field of force that generates a given ($N-1$)-parametric family of orbits for a mechanical system with $N$ degrees of freedom. This problem is usually referred to as the inverse problem of dynamics. We study this problem in relation to the problems of celestial mechanics. We state and solve a generalization of the Dainelli and Joukovski problem and propose a new approach to solve the inverse Suslov's problem. We apply the obtained results to generalize the theorem enunciated by Joukovski in 1890, solve the inverse Stäckel problem and solve the problem of constructing the potential-energy function $U$ that is capable of generating a bi-parametric family of orbits for a particle in space. We determine the equations for the sought-for function $U$ and show that on the basis of these equations we can define a system of two linear partial differential equations with respect to $U$ which contains as a particular case the Szebehely equation. We solve completely a special case of the inverse dynamics problem of constructing $U$ that generates a given family of conics known as Bertrand's problem. At the end we establish the relation between Bertrand's problem and the solutions to the Heun differential equation. We illustrate our results by several examples.
References:
[1] Arnold, V. I.: Dynamical Systems 3. Viniti Moscow (1985), Russian.
[2] Bertrand, M. I.: Sur la posibilité de déduire d'une seule de lois de Kepler le principe de l'attraction. Comtes rendues 9 (1877).
[3] Bozis, G.: The inverse problem of dynamics: basic facts. Inverse Probl. 11 (1995), 687-708 Mech. 38 (1986), 357. MR 1345999
[4] Charlier, C. L.: Celestial Mechanics (Die Mechanik Des Himmels). Nauka Moscow (1966), Russian. MR 0205672
[5] Dainelli, U.: Sul movimento per una linea qualunque. Giorn. Mat. 18 (1880), Italian.
[6] Duboshin, G. H.: Celestial Mechanics. Nauka Moscow (1968), Russian.
[7] Ermakov, V. P.: Determination of the potential function from given partial integrals. Math. Sbornik, Ser. 4 15 (1881), Russian.
[8] Galiullin, A. S.: Inverse Problems of Dynamics. Mir Publishers Moscow (1984). MR 0758615 | Zbl 0654.70021
[9] Joukovski, N. E.: Construction of the potential function from a given family of trajectories. Gostexizdat (1948), 227-242 Russian.
[10] Klein, J.: Espaces variationnels et mécanique. Ann Inst. Fourier 12 (1962), 1-124. DOI 10.5802/aif.120 | MR 0215269 | Zbl 0281.49026
[11] Kratzer, A., Franz, W.: Transzendente Funktionen. Geest & Portig K.-G. Leipzig (1960). MR 0124531 | Zbl 0093.07101
[12] Kozlov, V. V.: Dynamical Systems X. General Theory of vortices. Encyclopedia of Math. Sciencies 67. Spinger Berlin (2003). DOI 10.1007/978-3-662-06800-7 | MR 1995646
[13] Lie, S.: Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordung. Leipzig. Ber. Heft 1.-S (1895), 53-128.
[14] Newton, I.: Philosophiæ Naturalis Principia Mathematica. London (1687).
[15] Puel, F.: Celestial Mechanics 32. ().
[16] Ramírez, R., N., N. Sadovskaia: Inverse problem in celestial mechanic. Atti. Sem. Mat. Fis. Univ. Modena LII (2004), 47-68. MR 2151083
[17] (ed.), A. Ronveaux: Heun's differential equations. Oxford University Press Oxford (1995). MR 1392976 | Zbl 0847.34006
[18] Sadovskaia, N.: Inverse problem in theory of ordinary differential equations. PhD. Thesis Univ. Politécnica de Cataluña (2002), Spanish.
[19] Suslov, G. K.: Determination of the power function from given particular integrals. Kiev (1890), Russian.
[20] Szebehely, V.: Open problems on the eve of the next millenium. Celest. Mech. Dyn. Astron. 65 (1997), 205-211. DOI 10.1007/BF00048447 | MR 1461606
[21] Szebehely, V.: On the determination of the potential E. Proverbio, Proc. Int. Mtg. Rotation of the Earth, Bologna, 1974.
[22] Whittaker, E. T.: A Treatise on the Analytic Dynamics of Particles and Rigid Bodies. Cambridge University Press Cambridge (1959). MR 0992404
Partner of
EuDML logo