Previous |  Up |  Next

Article

Title: Join-semilattices whose sections are residuated po-monoids (English)
Author: Chajda, Ivan
Author: Kühr, Jan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1107-1127
Summary lang: English
.
Category: math
.
Summary: We generalize the concept of an integral residuated lattice to join-semilattices with an upper bound where every principal order-filter (section) is a residuated semilattice; such a structure is called a {\it sectionally residuated semilattice}. Natural examples come from propositional logic. For instance, implication algebras (also known as Tarski algebras), which are the algebraic models of the implication fragment of the classical logic, are sectionally residuated semilattices such that every section is even a Boolean algebra. A similar situation rises in case of the Łukasiewicz multiple-valued logic where sections are bounded commutative BCK-algebras, hence MV-algebras. Likewise, every integral residuated (semi)lattice is sectionally residuated in a natural way. We show that sectionally residuated semilattices can be axiomatized as algebras $(A,r,\rightarrow ,\rightsquigarrow,1)$ of type $\langle 3,2,2,0\rangle $ where $(A,\rightarrow ,\rightsquigarrow,1)$ is a $\{\rightarrow ,\rightsquigarrow ,1\}$-subreduct of an integral residuated lattice. We prove that every sectionally residuated {\it lattice} can be isomorphically embedded into a residuated lattice in which the ternary operation $r$ is given by $r(x,y,z)=(x\cdot y)ěe z$. Finally, we describe mutual connections between involutive sectionally residuated semilattices and certain biresiduation algebras. (English)
Keyword: residuated lattice
Keyword: residuated semilattice
Keyword: biresiduation algebra
Keyword: pseudo-MV-algebra
Keyword: sectionally residuated semilattice
Keyword: sectionally residuated lattice
MSC: 06D35
MSC: 06F05
MSC: 06F35
idZBL: Zbl 1174.06324
idMR: MR2471170
.
Date available: 2010-07-21T08:12:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140444
.
Reference: [1] Abbott, J. C.: Semi-boolean algebra.Matem. Vestnik 4 (1967), 177-198. Zbl 0153.02704, MR 0239957
Reference: [2] Alten, C. J. van: Representable biresiduated lattices.J. Algebra 247 (2002), 672-691. MR 1877868, 10.1006/jabr.2001.9039
Reference: [3] Alten, C. J. van: On varieties of biresiduation algebras.Stud. Log. 83 (2006), 425-445. MR 2250119, 10.1007/s11225-006-8312-6
Reference: [4] Ceterchi, R.: Pseudo-Wajsberg algebras.Mult.-Valued Log. 6 (2001), 67-88. Zbl 1013.03074, MR 1817437
Reference: [5] Chajda, I., Halaš, R., Kühr, J.: Implication in MV-algebras.Algebra Univers. 52 (2004), 377-382. MR 2120523
Reference: [6] Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht (2000). Zbl 0937.06009, MR 1786097
Reference: [7] Galatos, N., Tsinakis, C.: Generalized MV-algebras.J. Algebra 283 (2005), 254-291. Zbl 1063.06008, MR 2102083, 10.1016/j.jalgebra.2004.07.002
Reference: [8] Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [9] Georgescu, G., Iorgulescu, A.: Pseudo-BCK algebras: An extension of BCK algebras.Proc. of DMTCS'01: Combinatorics, Computability and Logic, London (2001), 97-114. Zbl 0986.06018, MR 1934824
Reference: [10] Jipsen, P., Tsinakis, C.: A survey of residuated lattices.Ordered Algebraic Structures (J. Martinez, ed.), Kluwer Acad. Publ., Dordrecht (2002), 19-56. Zbl 1070.06005, MR 2083033
Reference: [11] Kühr, J.: Pseudo BCK-algebras and residuated lattices.Contr. Gen. Algebra 16 (2005), 139-144. MR 2166954
Reference: [12] Kühr, J.: Commutative pseudo BCK-algebras.(to appear) in Southeast Asian Bull. Math. MR 2524913
Reference: [13] Leuştean, I.: Non-commutative Łukasiewicz propositional logic.Arch. Math. Log. 45 (2006), 191-213. MR 2209743, 10.1007/s00153-005-0297-8
Reference: [14] Rachůnek, J.: A non-commutative generalization of MV-algebras.Czech. Math. J. 52 (2002), 255-273. MR 1905434, 10.1023/A:1021766309509
Reference: [15] Ward, M., Dilworth, R. P.: Residuated lattices.Trans. Am. Math. Soc. 45 (1939), 335-354. Zbl 0021.10801, MR 1501995, 10.1090/S0002-9947-1939-1501995-3
.

Files

Files Size Format View
CzechMathJ_58-2008-4_18.pdf 324.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo