Previous |  Up |  Next


Title: A measure-theoretic characterization of the Henstock-Kurzweil integral revisited (English)
Author: Lee, Tuo-Yeong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1221-1231
Summary lang: English
Category: math
Summary: In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is $F_{\sigma \delta }$ regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral. (English)
Keyword: Henstock variational measure
Keyword: Henstock-Kurzweil integral
MSC: 26A39
idZBL: Zbl 1174.26005
idMR: MR2471178
Date available: 2010-07-21T08:16:30Z
Last updated: 2020-07-03
Stable URL:
Reference: [1] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: Variational measures related to local systems and the ward property of ${\cal P}$-adic path bases.Czech. Math. J. 56 (2006), 559-578. Zbl 1164.26316, MR 2291756, 10.1007/s10587-006-0037-1
Reference: [2] Piazza, L. Di: Variational measures in the theory of the integration in ${\mathbb R}^m$.Czech. Math. J. 51 (2001), 95-110. MR 1814635, 10.1023/A:1013705821657
Reference: [3] Faure, Claude-Alain: A descriptive definition of some multidimensional gauge integrals.Czech. Math. J. 45 (1995), 549-562. Zbl 0852.26010, MR 1344520
Reference: [4] Henstock, R., Muldowney, P., Skvortsov, V. A.: Partitioning infinite-dimensional spaces for generalized Riemann integration.Bull. London Math. Soc. 38 (2006), 795-803. Zbl 1117.28010, MR 2268364, 10.1112/S0024609306018819
Reference: [5] Kurzweil, J., Jarník, J.: Differentiability and integrability in $n$ dimensions with respect to $\alpha$-regular intervals.Results Math. 21 (1992), 138-151. MR 1146639, 10.1007/BF03323075
Reference: [6] Tuo-Yeong, Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space.Proc. London Math. Soc. 87 (2003), 677-700. MR 2005879
Reference: [7] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral.J. Math. Anal. Appl. 298 (2004), 677-692. MR 2086983, 10.1016/j.jmaa.2004.05.033
Reference: [8] Tuo-Yeong, Lee: A characterisation of multipliers for the Henstock-Kurzweil integral.Math. Proc. Cambridge Philos. Soc. 138 (2005), 487-492. MR 2138575, 10.1017/S030500410500839X
Reference: [9] Tuo-Yeong, Lee: The Henstock variational measure, Baire functions and a problem of Henstock.Rocky Mountain J. Math 35 (2005), 1981-1997. MR 2210644, 10.1216/rmjm/1181069626
Reference: [10] Tuo-Yeong, Lee: Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space.Czech. Math. J. 55 (2005), 625-637. MR 2153087, 10.1007/s10587-005-0050-9
Reference: [11] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral II.J. Math. Anal. Appl. 323 (2006), 741-745. MR 2262241, 10.1016/j.jmaa.2005.10.045
Reference: [12] Thomson, B. S.: Derivates of interval functions.Mem. Amer. Math. Soc. 93 (1991). Zbl 0734.26003, MR 1078198
Reference: [13] Ward, A. J.: On the derivation of additive interval functions of intervals in $m$-dimensional space.Fund. Math. 28 (1937), 265-279.


Files Size Format View
CzechMathJ_58-2008-4_26.pdf 278.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo