| Title:
             | 
A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions (English) | 
| Author:
             | 
Hu, Guoen | 
| Author:
             | 
Yang, Dachun | 
| Author:
             | 
Yang, Dongyong | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
59 | 
| Issue:
             | 
1 | 
| Year:
             | 
2009 | 
| Pages:
             | 
159-171 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $\mu $ be a nonnegative Radon measure on ${{\mathbb R}^d}$ which only satisfies $\mu (B(x, r))\le C_0r^n$ for all $x\in {{\mathbb R}^d}$, $r>0$, with some fixed constants $C_0>0$ and $n\in (0,d].$ In this paper, a new characterization for the space $\mathop{\rm RBMO}(\mu )$ of Tolsa in terms of the John-Strömberg sharp maximal function is established. (English) | 
| Keyword:
             | 
non-doubling measure | 
| Keyword:
             | 
$\mathop{\rm RBMO}(\mu )$ | 
| Keyword:
             | 
sharp maximal function | 
| MSC:
             | 
42B25 | 
| MSC:
             | 
42B35 | 
| MSC:
             | 
43A99 | 
| idZBL:
             | 
Zbl 1224.42061 | 
| idMR:
             | 
MR2486622 | 
| . | 
| Date available:
             | 
2010-07-20T14:57:46Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/140470 | 
| . | 
| Reference:
             | 
[1] Hu, G., Wang, X., Yang, D.: A new characterization for regular BMO with non-doubling measures.Proc. Edinburgh Math. Soc. 51 (2008), 155-170. Zbl 1138.42012, MR 2391636 | 
| Reference:
             | 
[2] Hu, G., Yang, D.: Weighted norm inequalities for maximal singular integrals with non-doubling measures.Studia Math. 187 (2008), 101-123. MR 2413311, 10.4064/sm187-2-1 | 
| Reference:
             | 
[3] John, F.: Quasi-isometric mappings.1965 Seminari 1962/63 Anal. Alg. Geom. e Topol., vol. 2, Ist. Naz. Alta Mat., 462-473, Ediz. Cremonese, Rome. Zbl 0263.46006, MR 0190905 | 
| Reference:
             | 
[4] Lerner, A. K.: On the John-Strömberg characterization of BMO for nondoubling measures.Real Anal. Exch. 28 (2002/03), 649-660. Zbl 1044.42018, MR 2010347, 10.14321/realanalexch.28.2.0649 | 
| Reference:
             | 
[5] Mateu, J., Mattila, P., Nicolau, A., Orobitg, J.: BMO for nondoubling measures.Duke Math. J. 102 (2000), 533-565. Zbl 0964.42009, MR 1756109, 10.1215/S0012-7094-00-10238-4 | 
| Reference:
             | 
[6] Meng, Y.: Multilinear Calderón-Zygmund operators on the product of Lebesgue spaces with non-doubling measures.J. Math. Anal. Appl. 335 (2007), 314-331. Zbl 1121.42012, MR 2340323, 10.1016/j.jmaa.2007.01.075 | 
| Reference:
             | 
[7] Nazarov, F., Treil, S., Volberg, A.: The $Tb$-theorem on non-homogeneous spaces.Acta Math. 190 (2003), 151-239. Zbl 1065.42014, MR 1998349, 10.1007/BF02392690 | 
| Reference:
             | 
[8] Strömberg, J. O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces.Indiana Univ. Math. J. 28 (1979), 511-544. MR 0529683, 10.1512/iumj.1979.28.28037 | 
| Reference:
             | 
[9] Tolsa, X.: $BMO$, $H^1$ and Calderón-Zygmund operators for non doubling measures.Math. Ann. 319 (2001), 89-149. MR 1812821, 10.1007/PL00004432 | 
| Reference:
             | 
[10] Tolsa, X.: Painlevé's problem and the semiadditivity of analytic capacity.Acta Math. 190 (2003), 105-149. Zbl 1060.30031, MR 1982794, 10.1007/BF02393237 | 
| Reference:
             | 
[11] Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture.Am. J. Math. 126 (2004), 523-567. Zbl 1060.30032, MR 2058383, 10.1353/ajm.2004.0021 | 
| Reference:
             | 
[12] Tolsa, X.: Analytic capacity and Calderón-Zygmund theory with non doubling measures. Seminar of Mathematical Analysis, 239-271, {Colecc. Abierta}, {\it 71}, Univ. Sevilla Secr. Publ., Seville.(2004). MR 2117070 | 
| Reference:
             | 
[13] Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral.Ann. Math. 162 (2005), 1243-1304. Zbl 1097.30020, MR 2179730, 10.4007/annals.2005.162.1243 | 
| Reference:
             | 
[14] Tolsa, X.: Painlevé's problem and analytic capacity.Collect. Math. Extra (2006), 89-125. Zbl 1105.30015, MR 2264206 | 
| Reference:
             | 
[15] Verdera, J.: The fall of the doubling condition in Calderón-Zygmund theory.Publ. Mat. Extra (2002), 275-292. Zbl 1025.42008, MR 1964824, 10.5565/PUBLMAT_Esco02_12 | 
| Reference:
             | 
[16] Volberg, A.: Calderón-Zygmund capacities and operators on nonhomogeneous spaces {CBMS Regional Conference Series in Mathematics}, {\it 100}, Amer. Math. Soc., Providence, RI.(2003). MR 2019058 | 
| . |