| Title:
             | 
A simple formula for an analogue of conditional Wiener integrals and its applications. II (English) | 
| Author:
             | 
Cho, Dong Hyun | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
59 | 
| Issue:
             | 
2 | 
| Year:
             | 
2009 | 
| Pages:
             | 
431-452 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $C[0,T]$ denote the space of real-valued continuous functions on the interval $[0,T]$ with an analogue $w_\varphi $ of Wiener measure and for a partition $ 0=t_0< t_1< \cdots < t_n <t_{n+1}= T$ of $[0, T]$, let $X_n\: C[0,T]\to \mathbb R^{n+1}$ and $X_{n+1} \: C [0, T]\to \mathbb R^{n+2}$ be given by $X_n(x) = ( x(t_0), x(t_1), \cdots , x(t_n))$ and $X_{n+1} (x) = ( x(t_0), x(t_1), \cdots , x(t_{n+1}))$, respectively. \endgraf In this paper, using a simple formula for the conditional $w_\varphi $-integral of functions on $C[0, T]$ with the conditioning function $X_{n+1}$, we derive a simple formula for the conditional $w_\varphi $-integral of the functions with the conditioning function $X_n$. As applications of the formula with the function $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions of the form $F_m(x) = \int _0^T (x(t))^m d t$ for $x\in C[0, T]$ and for any positive integer $m$. Moreover, with the conditioning $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions in a Banach algebra $\mathcal S_{w_\varphi }$ which is an analogue of the Cameron and Storvick's Banach algebra  $\mathcal S$. Finally, we derive the conditional analytic Feynman $w_\varphi $-integrals of the functions in $\mathcal S_{w_\varphi }$. (English) | 
| Keyword:
             | 
analogue of Wiener measure | 
| Keyword:
             | 
Cameron-Martin translation theorem | 
| Keyword:
             | 
conditional analytic Feynman $w_\varphi $-integral | 
| Keyword:
             | 
conditional Wiener integral | 
| Keyword:
             | 
Kac-Feynman formula | 
| Keyword:
             | 
simple formula for conditional $w_\varphi $-integral | 
| MSC:
             | 
28C20 | 
| MSC:
             | 
60H05 | 
| idZBL:
             | 
Zbl 1224.28031 | 
| idMR:
             | 
MR2532375 | 
| . | 
| Date available:
             | 
2010-07-20T15:18:20Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/140490 | 
| . | 
| Reference:
             | 
[1] Ash, R. B.: Real analysis and probability.Academic Press, New York-London (1972). MR 0435320 | 
| Reference:
             | 
[2] Cameron, R. H., Martin, W. T.: Transformations of Wiener integrals under translations.Ann. Math. 45 (1944), 386-396. Zbl 0063.00696, MR 0010346, 10.2307/1969276 | 
| Reference:
             | 
[3] Cameron, R. H., Storvick, D. A.: Some Banach algebras of analytic Feynman integrable functionals.Lecture Notes in Math. 798, Springer, Berlin-New York (1980). Zbl 0439.28007, MR 0577446, 10.1007/BFb0097256 | 
| Reference:
             | 
[4] Chang, K. S., Chang, J. S.: Evaluation of some conditional Wiener integrals.Bull. Korean Math. Soc. 21 (1984), 99-106. Zbl 0576.28023, MR 0768465 | 
| Reference:
             | 
[5] Cho, D. H.: A simple formula for an analogue of conditional Wiener integrals and its applications.Trans. Amer. Math. Soc. 360 (2008), 3795-3811. Zbl 1151.28017, MR 2386246, 10.1090/S0002-9947-08-04380-8 | 
| Reference:
             | 
[6] Chung, D. M., Skoug, D.: Conditional analytic Feynman integrals and a related Schrödinger integral equation.SIAM J. Math. Anal. 20 (1989), 950-965. Zbl 0678.28007, MR 1000731, 10.1137/0520064 | 
| Reference:
             | 
[7] Im, M. K., Ryu, K. S.: An analogue of Wiener measure and its applications.J. Korean Math. Soc. 39 (2002), 801-819. Zbl 1017.28007, MR 1920906, 10.4134/JKMS.2002.39.5.801 | 
| Reference:
             | 
[8] Laha, R. G., Rohatgi, V. K.: Probability theory.John Wiley & Sons, New York-Chichester-Brisbane (1979). Zbl 0409.60001, MR 0534143 | 
| Reference:
             | 
[9] Park, C., Skoug, D.: A simple formula for conditional Wiener integrals with applications.Pacific J. Math. 135 (1988), 381-394. Zbl 0655.28007, MR 0968620, 10.2140/pjm.1988.135.381 | 
| Reference:
             | 
[10] Ryu, K. S., Im, M. K.: A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula.Trans. Amer. Math. Soc. 354 (2002), 4921-4951. Zbl 1017.28008, MR 1926843, 10.1090/S0002-9947-02-03077-5 | 
| Reference:
             | 
[11] Yeh, J.: Transformation of conditional Wiener integrals under translation and the Cameron-Martin translation theorem.Tôhoku Math. J. 30 (1978), 505-515. Zbl 0409.28006, MR 0516883, 10.2748/tmj/1178229910 | 
| Reference:
             | 
[12] Yeh, J.: Inversion of conditional Wiener integrals.Pacific J. Math. 59 (1975), 623-638. Zbl 0365.60073, MR 0390162, 10.2140/pjm.1975.59.623 | 
| Reference:
             | 
[13] Yeh, J.: Inversion of conditional expectations.Pacific J. Math. 52 (1974), 631-640. Zbl 0323.60003, MR 0365644, 10.2140/pjm.1974.52.631 | 
| Reference:
             | 
[14] Yeh, J.: Stochastic processes and the Wiener integral.Marcel Dekker, New York (1973). Zbl 0277.60018, MR 0474528 | 
| . |