Previous |  Up |  Next

Article

Keywords:
parametric variational problem; regularity; multisymplectic
Summary:
We show that asserting the regularity (in the sense of Rund) of a first-order parametric multiple-integral variational problem is equivalent to asserting that the differential of the projection of its Hilbert-Carathéodory form is multisymplectic, and is also equivalent to asserting that Dedecker extremals of the latter $(m+1)$-form are holonomic.
References:
[1] Cantrijn, F., Ibort, A., Léon, M. de: On the geometry of multisymplectic manifolds. J. Australian Math. Soc. 66 (1999), 303-330. DOI 10.1017/S1446788700036636 | MR 1694063
[2] Cariñena, J. F., Crampin, M., Ibort, L. A.: On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1 (1991), 345-374. DOI 10.1016/0926-2245(91)90013-Y | MR 1244450
[3] Crampin, M., Saunders, D. J.: The Hilbert-Carathéodory form for parametric multiple integral problems in the calculus of variations. Acta Applicandae Math. 76 (2003), 37-55. DOI 10.1023/A:1022862117662 | MR 1967453 | Zbl 1031.53106
[4] Crampin, M., Saunders, D. J.: The Hilbert-Carathéodory and Poincaré-Cartan forms for higher-order multiple-integral variational problems. Houston J. Math. 30 (2004), 657-689. MR 2083869 | Zbl 1057.58008
[5] Crampin, M., Saunders, D. J.: On null Lagrangians. Diff. Geom. Appl. 22 (2005), 131-146. DOI 10.1016/j.difgeo.2004.10.002 | MR 2122738 | Zbl 1073.70023
[6] Dedecker, P. M.: On the generalization of symplectic geometry to multiple integrals in the calculus of variations. Lecture Notes in Mathematics, Springer 570 (1977), 395-456. DOI 10.1007/BFb0087794 | MR 0458478 | Zbl 0352.49018
[7] Giaquinta, M., Hildenbrandt, S.: Calculus of Variations II. Springer (1996). MR 1385926
[8] Krupková, O.: Hamiltonian field theory. J. Geom. Phys. 43 (2002), 93-132. DOI 10.1016/S0393-0440(01)00087-0 | MR 1919207
[9] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations. Van Nostrand (1966). MR 0230189
[10] Rund, H.: A geometrical theory of multiple integral problems in the calculus of variations. Canadian J. Math. 20 (1968), 639-657. DOI 10.4153/CJM-1968-062-1 | MR 0238243 | Zbl 0155.44301
Partner of
EuDML logo