[1] Bokut, L. A.: 
Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras. Izv. Akad. Nauk. SSSR Ser. Mat. 36 (1972), 1173-1219. 
MR 0330250[2] Bokut, L. A.: 
Imbeddings into simple associative algebras. Algebra i Logika. 15 (1976), 117-142. 
MR 0506423[3] Bokut, L. A., Chen, Yuqun: 
Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov. Southeast Asian Bull. Math. 31 (2007), 1057-1076. 
MR 2386984 | 
Zbl 1150.17008[4] Bokut, L. A., Fong, Y., Ke, W.-F.: 
Gröbner-Shirshov bases and composition lemma for associative conformal algebras: an example. Contemporary Mathematics N264 (2000), 63-91. 
DOI 10.1090/conm/264/04211 | 
MR 1800688[5] Bokut, L. A., Klein, A. A.: 
Serre relations and Gröbner-Shirshov bases for simple Lie algebras. I, II. Internat. J. Algebra Comput. 6 (1996), 389-400, 401-412. 
DOI 10.1142/S0218196796000222 | 
MR 1414346[6] Bokut, L. A., Klein, A. A.: 
Gröbner-Shirshov bases for exceptional Lie algebras. I. Ring Theory. Selected Papers from the Conference Held in Miskolc, July 15-20, 1996, Amsterdam (1998) 51-57. 
MR 1653694[7] Bokut, L. A., Klein, A. A.: Gröbner-Shirshov bases for exceptional Lie algebras $E_6$, $E_7$, and $E_8$. Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 37-46.
[9] Bokut, L. A., Malcolson, P.: 
Gröbner-Shirshov bases for relations of a Lie algebra and its enveloping algebra. Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 47-54. 
MR 1733167[10] Bokut, L. A., Kang, S.-J., Lee, K.-H., Malcolmson, P.: 
Gröbner-Shirshov bases for Lie super-algebras and their universal enveloping algebras. J. Algebra. 217 (1999), 461-495. 
DOI 10.1006/jabr.1998.7810 | 
MR 1700511[11] Chibrikov, E. S.: On free Lie conformal algebras. Vestnik Novosibirsk State University 4 (2004), 65-83.
[13] Humphreys, James E.: 
Introduction to Lie Algebras and Representation Theory. Springer-Verlag (2000), 1970. 
MR 0499562 | 
Zbl 0447.17002[14] Kac, V.-G.: 
Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge, third edition (1990). 
Zbl 0716.17022[15] Kac, V.-G.: 
Vertex Algebra for Beginners. University lecture series., 10, AMS, Providence, RI (1997). 
MR 1417941[16] Kang, S.-J., Lee, K.-H.: 
Gröbner-Shirshov bases for representation theory. J. Korean Math. Soc. 37 (2000), 55-72. 
MR 1749085 | 
Zbl 0979.16010[19] Kang, S.-J., Lee, I.-S., Lee, K.-H., Oh, H.: 
Representations of Ariki-Koike algebras and Gröbner-Shirshov bases. Proc. London Math. Soc. 89 (2004), 54-70. 
MR 2063659 | 
Zbl 1065.20008[23] Poroshenko, E. N.: 
Gröbner-Shirshov bases for the Kac-Moody algebras of the type $C^{(1)}_n$ and $D^{(1)}_n$. Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 2 (2002), 58-70. 
MR 2058346[24] Poroshenko, E. N.: 
Gröbner-Shirshov bases for the Kac-Moody algebras of the type $B^{(1)}_n$. Int. J. Math. Game Theory Algebra. 13 (2003), 117-128. 
MR 2058346[26] Shirshov, A. I.: Some algorithmic problem for Lie algebras. Sibirsk. Mat. Z. 3 (1962), 292-296 Russian; English translation in SIGSAM Bull. 33 (1999), 3-6.