Previous |  Up |  Next

Article

Title: Global structure of positive solutions for superlinear $2m$th-boundary value problems (English)
Author: Ma, Ruyun
Author: An, Yulian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 161-172
Summary lang: English
.
Category: math
.
Summary: We consider boundary value problems for nonlinear $2m$th-order eigenvalue problem $$ \begin{aligned} (-1)^mu^{(2m)}(t)&=\lambda a(t)f(u(t)),\ \ \ \ \ 0<t<1, \\ u^{(2i)}(0)&=u^{(2i)}(1)=0,\ \ \ \ i=0,1,2,\cdots ,m-1 . \end{aligned} $$ where $a\in C([0,1], [0,\infty ))$ and $a(t_0)>0$ for some $t_0\in [0,1]$, $f\in C([0,\infty ),[0,\infty ))$ and $f(s)>0$ for $s>0$, and $f_0=\infty $, where $f_0=\lim _{s\rightarrow 0^+}f(s)/s$. We investigate the global structure of positive solutions by using Rabinowitz's global bifurcation theorem. (English)
Keyword: multiplicity results
Keyword: Lidstone boundary value problem
Keyword: eigenvalues
Keyword: bifurcation methods
Keyword: positive solutions
MSC: 34B08
MSC: 34B10
MSC: 34B18
MSC: 34G20
MSC: 47J15
MSC: 47N20
idZBL: Zbl 1224.34034
idMR: MR2595080
.
Date available: 2010-07-20T16:24:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140559
.
Reference: [1] Gupta, C. P.: Existence and uniqueness theorems for the bending of an elastic beam equation.Appl. Anal. 26 (1988), 289-304. Zbl 0611.34015, MR 0922976, 10.1080/00036818808839715
Reference: [2] Agarwal, R. P.: Boundary Value Problems for Higher Order Differential Equations.World Scientific, Singapore (1986). Zbl 0619.34019, MR 1021979
Reference: [3] Agarwal, R. P., Wong, P. J. Y.: Lidstone polynomials and boundary value problems.Comput. Math. Appl. 17 (1989), 1397-1421. Zbl 0682.65049, MR 0992124, 10.1016/0898-1221(89)90023-0
Reference: [4] Yang, Y. S.: Fourth-order two-point boundary value problems.Proc. Amer. Math. Soc. 104 (1988), 175-180. Zbl 0671.34016, MR 0958062, 10.1090/S0002-9939-1988-0958062-3
Reference: [5] Pino, M. A. Del, Manásevich, R. F.: Multiple solutions for the $p$-Laplacian under global nonresonance.Proc. Amer. Math. Soc. 112 (1991), 131-138. MR 1045589
Reference: [6] Ma, R., Wang, H.: On the existence of positive solutions of fourth-order ordinary differential equations.Appl. Anal. 59 (1995), 225-231. Zbl 0841.34019, MR 1378037, 10.1080/00036819508840401
Reference: [7] Ma, R., Zhang, J., Fu, S.: The method of lower and upper solutions for fourth-order two-point boundary value problems.J. Math. Anal. Appl. 215 (1997), 415-422. Zbl 0892.34009, MR 1490759, 10.1006/jmaa.1997.5639
Reference: [8] Bai, Z., Wang, H.: On positive solutions of some nonlinear fourth-order beam equations.J. Math. Anal. Appl. 270 (2002), 357-368. Zbl 1006.34023, MR 1915704, 10.1016/S0022-247X(02)00071-9
Reference: [9] Bai, Z., Ge, W.: Solutions of $2n$th Lidstone boundary value problems and dependence on higher order derivatives.J. Math. Anal. Appl. 279 (2003), 442-450. MR 1974036, 10.1016/S0022-247X(03)00011-8
Reference: [10] Yao, Q.: On the positive solutions of Lidstone boundary value problems.Applied Mathematics and Computation 137 (2003), 477-485. Zbl 1093.34515, MR 1950111, 10.1016/S0096-3003(02)00152-2
Reference: [11] Li, Y.: Abstract existence theorems of positive solutions for nonlinear boundary value problems.Nonlinear Anal. TMA 57 (2004), 211-227. Zbl 1064.47058, MR 2056428
Reference: [12] Li, F., Li, Y., Liang, Z.: Existence and multiplicity of solutions to $2m$th-order ordinary differential equations.J. Math. Anal. Appl. 331 (2007), 958-977. Zbl 1119.34014, MR 2313694, 10.1016/j.jmaa.2006.09.025
Reference: [13] Rynne, B. P.: Global bifurcation for $2m$th-order boundary value problems and infinitely many solutions of superlinear problems.J. Differential Equations 188 (2003), 461-472. MR 1954290, 10.1016/S0022-0396(02)00146-8
Reference: [14] Rynne, B. P.: Solution curves of $2m$th order boundary value problems.Electron. J. Differential Equations 32 (2004), 1-16. Zbl 1060.34011, MR 2036216
Reference: [15] Bari, R., Rynne, B. P.: Solution curves and exact multiplicity results for $2m$th order boundary value problems.J. Math. Anal. Appl. 292 (2004), 17-22. MR 2050212, 10.1016/j.jmaa.2003.08.043
Reference: [16] Ma, R.: Existence of positive solutions of a fourth-order boundary value problem.Appl. Math. Comput. 168 (2005), 1219-1231. Zbl 1082.34023, MR 2171774, 10.1016/j.amc.2004.10.014
Reference: [17] Ma, R.: Nodal solutions of boundary value problems of fourth-order ordinary differential equations.J. Math. Anal. Appl. 319 (2006), 424-434. Zbl 1098.34012, MR 2227914, 10.1016/j.jmaa.2005.06.045
Reference: [18] Ma, R.: Nodal solutions for a fourth-order two-point boundary value problem.J. Math. Anal. Appl. 314 (2006), 254-265. Zbl 1085.34015, MR 2183550, 10.1016/j.jmaa.2005.03.078
Reference: [19] Elias, U.: Eigenvalue problems for the equation $Ly + \lambda p(x)y = 0$.J. Diff. Equations, 29 (1978), 28-57. Zbl 0369.34008, MR 0486759, 10.1016/0022-0396(78)90039-6
Reference: [20] Whyburn, G. T.: Topological Analysis.Princeton University Press, Princeton (1958). Zbl 0080.15903, MR 0099642
Reference: [21] Xu, J., Han, X.: Existence of nodal solutions for Lidstone eigenvalue problems.Nonlinear Analysis TMA 67 (2007), 3350-3356. Zbl 1136.34016, MR 2350891, 10.1016/j.na.2006.10.017
Reference: [22] Rabinowitz, P.: Some global results for nonlinear eigenvalue problems.J. Funct. Anal. 7 (1971), 487-513. Zbl 0212.16504, MR 0301587, 10.1016/0022-1236(71)90030-9
.

Files

Files Size Format View
CzechMathJ_60-2010-1_14.pdf 264.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo