[2] Cannone, M.: 
Ondelettes, paraproduits, et Navier-Stokes. Nouveaux Essais, Paris, Diderot (1995). 
MR 1688096 | 
Zbl 1049.35517[3] Constantin, P., Foias, C.: 
Navier-Stokes equations. Chicago Lectures in Mathematics, University of Chicago Press (1988). 
MR 0972259 | 
Zbl 0687.35071[4] Farwig, R., Kozono, H., Sohr, H.: 
An $L^q$-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195 (2005), 21-53. 
DOI 10.1007/BF02588049 | 
MR 2233684[6] Farwig, R., Kozono, H., Sohr, H.: 
Maximal regularity of the Stokes operator in general unbounded domains of $\Bbb R^n$. H. Amann Functional analysis and evolution equations. The Günter Lumer volume. Basel: Birkhäuser 257-272 (2008). 
MR 2402733[7] Giga, Y.: 
Domains of fractional powers of the Stokes operator in $L_r$ spaces. Arch. Ration. Mech. Anal. 89 (1985), 251-265. 
DOI 10.1007/BF00276874 | 
MR 0786549[8] Grisvard, P.: 
Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics 24, Pitman (1985). 
MR 0775683 | 
Zbl 0695.35060[11] Kalton, N. J., Kunstmann, P. C., Weis, L.: 
Perturbation and interpolation theorems for the $H^\infty$-calculus with applications to differential operators. Math. Ann. 336 (2006), 747-801. 
DOI 10.1007/s00208-005-0742-3 | 
MR 2255174[13] Kunstmann, P. C.: 
Maximal $L^p$-regularity for second order elliptic operators with uniformly continuous coefficients on domains, in Iannelli. Mimmo Evolution equations: applications to physics, industry, life sciences and economics, Basel, Birkhäuser., Prog. Nonlinear Differ. Equ. Appl. Vol. 55 293-305 (2003). 
MR 2013196[15] Kunstmann, P. C., Weis, L.: 
Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus. M. Iannelli, R. Nagel, S. Piazzera Functional Analytic Methods for Evolution Equations, Springer Lecture Notes Math. Vol. 1855 65-311 (2004). 
DOI 10.1007/978-3-540-44653-8_2 | 
MR 2108959[16] Lions, J. L.: 
Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris, Dunod (1969). 
MR 0259693 | 
Zbl 0189.40603[17] Meyer, Y.: 
Wavelets, paraproducts, and Navier-Stokes equations. R. Bott Current developments in mathematics, 1996. Proceedings of the joint seminar, Cambridge, MA, USA 1996. Cambridge, International Press 105-212 (1997). 
MR 1724946 | 
Zbl 0926.35115[19] Sohr, H.: 
The Navier-Stokes equations. An elementary functional analytic approach, Basel, Birkhäuser (2001). 
MR 1928881 | 
Zbl 1007.35051[20] Triebel, H.: 
Interpolation, Function Spaces, Differential Operators. North-Holland Mathematical Library. Vol. 18. Amsterdam-New York-Oxford (1978). 
MR 0503903