Previous |  Up |  Next


nonmeasurable set; Bernstein set; Polish ideal space
Let $(X,\mathbb I)$ be a Polish ideal space and let $T$ be any set. We show that under some conditions on a relation $R\subseteq T^2\times X$ it is possible to find a set $A\subseteq T$ such that $R(A^2)$ is completely $\mathbb I $-nonmeasurable, i.e, it is $\mathbb I$-nonmeasurable in every positive Borel set. We also obtain such a set $A\subseteq T$ simultaneously for continuum many relations $(R_\alpha )_{\alpha <2^\omega }.$ Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.
[1] Cichoń, J., Jasiński, A.: A note on algebraic sums of sets of reals. Real Anal. Exchange 28 (2003), 493-497. DOI 10.14321/realanalexch.28.2.0493 | MR 2010332
[2] Cichoń, J., Morayne, M., Rałowski, R., Ryll-Nardzewski, Cz., {.Z}eberski, Sz.: On nonmeasurable unions. Topology and its Applications 154 (2007), 884-893. MR 2294636
[3] Ciesielski, K., Fejzić, H., Freiling, C.: Measure zero sets with non-measurable sum. Real Anal. Exchange 27 (2001/02), 783-793. MR 1923168
[4] Kharazishvili, A.: Some remarks on additive properties of invariant $\sigma$-ideals on the real line. Real Anal. Exchange 21 (1995/96), 715-724. MR 1407284 | Zbl 0879.28026
[5] Kysiak, M.: Nonmeasurable algebraic sums of sets of reals. Colloquium Mathematicum 102 (2005), 113-122. DOI 10.4064/cm102-1-10 | MR 2150273 | Zbl 1072.28002
[6] Rałowski, R., {.Z}eberski, Sz.: Complete nonmeasurability in regular families. Houston Journal in Mathematics 34 (2008), 773-780. MR 2448381
[7] Sierpiński, W.: Sur la question de la measurabilite de la base de M. Hamel. Fundamenta Mathematicae 1 (1920), 105-111 \JFM 47.0180.03. DOI 10.4064/fm-1-1-105-111
[8] {.Z}eberski, Sz.: On completely nonmeasurable unions. Mathematical Logic Quarterly 53 (2007), 38-42. DOI 10.1002/malq.200610024 | MR 2288888 | Zbl 1109.03046
Partner of
EuDML logo