Article
Keywords:
finite group ring; BN-pair; authentication code
Summary:
In this paper, we determine all the normal forms of Hermitian matrices over finite group rings $R=F_{q^2}G$, where $q=p^{\alpha }$, $G$  is a commutative $p$-group with order  $p^{\beta }$. Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over  $R$ through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters.
References:
                        
[2] Gao, Y.: 
Computation of the orders of unitary groups over finite local rings. Acta Math. Scientia 25A (2005), 564-568 Chinese. 
MR 2175620 | 
Zbl 1101.20305 
[3] Karpilovsky, G.: 
Commutative Group Algebra. Marcel Dekker New York (1983). 
MR 0704185 
[4] Wan, Z. X.: 
Further construction of Cartesian authentication codes from unitary geometry. Designs, Codes and Cryptology 2 (1992), 333-356. 
DOI 10.1007/BF00125202 | 
MR 1194775 
[5] Wan, Z. X.: 
Geometry of Classical Groups over Finite Fields. Studentlitteratur Lund (1993). 
MR 1254440 | 
Zbl 0817.51001 
[6] You, H.: 
Sylow subgroups of classical groups over finite commutative rings. Acta Math. Sinica 39 (1996), 33-40 Chinese. 
MR 1412901 | 
Zbl 0863.20020 
[7] You, H., Nan, J. Z.: 
Using normal form of matrices over finite fields to construct Cartesian authentication codes. J. Math. Res. Exposition 18 (1998), 341-346. 
MR 1645903 | 
Zbl 0953.94024