| Title:
             | 
Counting irreducible polynomials over finite fields (English) | 
| Author:
             | 
Wang, Qichun | 
| Author:
             | 
Kan, Haibin | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
60 | 
| Issue:
             | 
3 | 
| Year:
             | 
2010 | 
| Pages:
             | 
881-886 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: \[ \pi (x)= \frac q{q - 1}\frac x{{\log _q x}}+ \frac q{(q - 1)^2}\frac x{{\log _q^2 x}}+O\Bigl (\frac {x}{{\log _q^3 x}}\Bigr ),\quad x=q^n\rightarrow \infty \] where $\pi (x)$  denotes the number of monic irreducible polynomials in  $F_q [t]$ with norm $ \le x$. (English) | 
| Keyword:
             | 
finite fields | 
| Keyword:
             | 
distribution of irreducible polynomials | 
| Keyword:
             | 
residue | 
| MSC:
             | 
11T55 | 
| idZBL:
             | 
Zbl 1224.11086 | 
| idMR:
             | 
MR2672421 | 
| . | 
| Date available:
             | 
2010-07-20T17:24:02Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/140610 | 
| . | 
| Reference:
             | 
[1] Kruse, M., Stichtenoth, H.: Ein Analogon zum Primzahlsatz fur algebraische Functionenkoper.Manuscripta Math. 69 (1990), 219-221 German. MR 1078353, 10.1007/BF02567920 | 
| Reference:
             | 
[2] Davenport, H.: Multiplicative Number Theory.Springer-Verlag New York (1980). Zbl 0453.10002, MR 0606931 | 
| . |