[2] Asano, T., Nishizeki, T., Watanabe, T.: 
An approximation algorithm for the Hamiltonian walk problems on maximal planar graphs. Discrete Appl. Math. 5 (1983), 211-222. 
DOI 10.1016/0166-218X(83)90042-2 | 
MR 0683513[5] Chartrand, G., Saenpholphat, V., Thomas, T., Zhang, P.: 
A new look at Hamiltonian walks. Bull. Inst. Combin. Appl. 42 (2004), 37-52. 
MR 2082480[6] Chartrand, G., Zhang, P.: 
Introduction to Graph Theory. McGraw-Hill, Boston (2005). 
Zbl 1096.05001[8] Okamoto, F., Saenpholphat, V., Zhang, P.: 
Measures of traceability in graphs. Math. Bohem. 131 (2006), 63-83. 
MR 2211004 | 
Zbl 1112.05032[9] Okamoto, F., Saenpholphat, V., Zhang, P.: 
The upper traceable number of a graph. (to appear) in Czech. Math. J. 
MR 2402537 | 
Zbl 1174.05040[10] Nebeský, L.: 
A generalization of Hamiltonian cycles for trees. Czech. Math. J. 26 (1976), 596-603. 
MR 0543670[13] Vacek, P.: 
Bounds of lengths of open Hamiltonian walks. Arch. Math., Brno 28 (1992), 11-16. 
MR 1201861 | 
Zbl 0782.05056